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ABSTRACT 
 

This study is an attempt to investigate the photocatalytic performance of magnesium (Mg) doped 
SnO2 nanoparticles (NPs) for the degradation of Crystal Violet (CV) dye under sunlight irradiation. 
Mg doped SnO2 NPs with varying concentrations of Mg were synthesized through coprecipitation 
method. The synthesized NPs were characterized using X-ray diffraction (XRD), UV-Vis 
spectroscopy and Fourier transform infrared (FTIR) spectroscopy to confirm their structural and 
optical properties. The photocatalytic efficiency of Mg-doped SnO2 NPs was evaluated by 
examining the degradation rate of CV dye. The results demonstrated that Mg doping significantly 
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improved the photocatalytic activity of SnO2 NPs, with a 15wt% Mg doping concentration leading to 
the highest degradation rate of CV dye. The enhanced photocatalytic performance is attributed to 
the increased charge carrier separation due to Mg doping. This study highlights the potential of Mg-
doped SnO2 NPs as effective photocatalysts for the degradation of organic pollutants, offering a 
promising approach for wastewater treatment applications. 
 

 
Keywords: Tin oxide (SnO2); crystal violet dye; Mg-doped SnO2 nanoparticles; doping. 
 

1. INTRODUCTION 
 
The discharge of waste from textiles, paper and 
dye industries, extensive usage and improper 
disposal of pesticides and fertilizers in agriculture 
practices have resulted in a significant rise in 
various organic contaminants in natural water 
ecosystems.  Many of these organic pollutants 
are non-biodegradable and through anaerobic 
degradation they can generate carcinogenic 
intermediates. The textile industry consumes 
synthetic dyes more than 10,000 tons annually, 
which accounts for a fraction of 7 × 107 tons of 
synthetic dyes produced worldwide each year 
(Al-Tohamy et al., 2022). The release of these 
synthetic dyes into the environment causes 
adverse effects on human health and damages 
aquatic life and ecosystems (Kant, 2012). Dyes 
employed across various industries are 
categorized into cationic, anionic, and non-ionic 
groups based on their ionic charge. Among these 
dye categories, cationic dyes are considered to 
pose a higher level of toxicity when compared to 
their counterparts (Foroutan et al., 2022). Crystal 
violet (CV), alternatively referred to as gentian 
violet, methyl violet 10B, or hexamethyl 
pararosaniline chloride, is a cationic dye with 

molecular formula C25H30N3Cl. Fig. 1. illustrates 
the chemical structure of the CV dye. CV dye 
finds widespread application in the production of 
printing inks, paints, and dyes for their 
subsequent utilization in the textile industry. 
Beyond serving as a biological stain and playing 
a central role in Gram’s stain, CV dye is also 
frequently employed for the treatment of bacterial 
infection, and skin ailments in both humans and 
animals. Furthermore, it serves as an antifungal, 
antibacterial and antiparasitic component in 
poultry feed (Patel et al., 2021, Blanco-Flores et 
al., 2014). Nevertheless, extended exposure to 
these chemicals has been associated with 
certain health problems, including jaundice, mild 
eye discomfort, and mutagenic effects. The 
significant amount of these chemicals when 
ingested through the skin can be highly toxic to 
mammalian cells and can induce skin irritation 
and digestive track irritation, have carcinogenic 
properties, and may result in respiratory and 
kidney issues (Komal et al., 2024). These 
chemicals are regarded as persistent, as they 
are not easily digested by microorganisms 
(Foroutan et al., 2022; Blanco-Flores et al., 
2014). Therefore, it is crucial to remove these 
dye pollutants from waterbodies. 

 

 
 

Fig. 1. Chemical structure of CV dye 
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Recently, researchers have been growing 
interest in developing highly effective 
semiconducting photocatalysts to eliminate 
organic contaminants from wastewater through 
light irradiation and semiconducting materials. 
This offers an effective and cost-efficient method 
for cleaning wastewater (Asaithambi et al., 
2019). There are multiple techniques for dye 
removal, including sedimentation, chemical 
precipitation, adsorption, advanced oxidation 
processes (AOPs), ultrafiltration, reverse 
osmosis, ion exchange, and heterogeneous 
photocatalysis (Adeleke et al., 2018, Joshi et al., 
2023). Recently, heterogeneous photocatalysis 
has become increasingly popular for dye removal 
due to its high efficiency and cost-effectiveness. 
Semiconducting metal oxides such as ZnO, TiO2, 
SnO2, Fe2O3, and WO3 are often preferred 
materials for photocatalytic reactions 
(Mohammed Harshulkhan et al., 2016, Zhang et 
al., 2004; Kim et al., 2016; Ajeesha et al., 2021; 
Slimani et al., 2023; Hannachi et al., 2023; Yao 
et al., 2017). This preference is due to their 
excellent photostability, high photoactivity, 
biocompatibility, and the fact that they are 
relatively inexpensive and easy to produce. 
Among the different types of semiconducting 
metal oxides, tin oxide (SnO2) nanostructures 
have garnered significant attention recently for 
their potential in photocatalytic applications. 
SnO2 is an n-type semiconductor with a band 
gap energy of 3.6 eV, and it exhibits higher 
electron mobility compared to TiO2 (Kar et al., 
2019). Excellent transparency, high 
photosensitivity, chemical stability, affordability, 
and eco-friendliness are some of the other 
characteristics which makes SnO2 an effective 
photocatalytic material (Ali Baig et al., 2020). 
However, SnO2 faces limitations for large-scale 
applications due to its rapid recombination of 
photogenerated electron-hole pairs and low 
quantum yield in photocatalytic reactions, which 
affect its economic feasibility. Incorporating 
alkaline metals into the material alters the energy 
band gap, which can improve its electronic 
properties and boost its photocatalytic 
performance. Doping SnO2 with alkaline metals 
introduces lattice defects, such as oxygen 
vacancies, which enhances the generation of 
reactive oxygen species (ROS) (Asaithambi et 
al., 2020). This process improves the 
photocatalytic efficiency of SnO2 NPs. 
Appropriate metal doping can reduce the 
recombination of photogenerated electron-hole 
pairs during photocatalysis. Mg²⁺ (72 nm), with 
an ionic radius similar to that of Sn+4 (71 nm), is a 
promising option for doping in SnO2 NPs (Kumari 

et al., 2014; Sabri et al., 2012; Xiong et al., 
2016). Due to its non-toxic nature and cost-
effectiveness, Mg²⁺ doping can enhance the 
photocatalytic properties of SnO2 NPs. There are 
several chemical synthesis methods for 
producing SnO2 NPs, including chemical 
precipitation (Sahay et al., 2013), the sol-gel 
process (Aziz et al., 2013), microwave technique 
(Krishnakumar et al., 2009), chemical co-
precipitation (Asaithambi et al., 2020) and 
hydrothermal method (Patil et al., 2012; Bala 
Narsaiah et al., 2024). The chemical co-
precipitation method is highly beneficial for 
synthesizing nanomaterials because it offers a 
simple and cost-effective way to consistently 
produce NPs with controlled sizes and specific 
shapes (Tazikeh et al., 2014). 
 
In this study, we extensively explore the 
photocatalytic activity of SnO2 NPs that are 
doped with alkaline earth metal Mg. These NPs 
were synthesized using a straightforward co-
precipitation method. The investigation covered 
the structural, optical and compositional 
characteristics of both undoped and alkaline 
metal-doped SnO2 NPs. Additionally, the study 
includes a detailed analysis and discussion of the 
photocatalytic efficiency of these NPs. 
 

2. MATERIALS AND METHODS 
 

2.1 Materials Used 
 
Tin (IV) Chloride Pentahydrate (SnCl4.5H2O), 
Magnesium Nitrate Hexahydrate (Mg 
(NO3)2·6H2O), Sodium Hydroxide (NaOH) 
pellets, and Polyethylene Glycol (PEG), were 
used as reagent in this experiment.  All these 
chemicals of Analytical Reagent (AR) grade were 
purchased from Hi-media and used directly 
without any further purification. Double distilled 
water was used for all experimental procedures. 
 

2.2 Synthesis of Mg-Doped SNO2 NPs 
 
Homogeneous solutions of stannic chloride 
pentahydrate and appropriate amount (5 wt%, 10 
wt% and 15 wt%) of magnesium nitrate 
hexahydrate (Mg (NO3)2·6H2O) in 50 ml of DI 
water were prepared separately. After 15 
minutes of stirring, the solution containing 
magnesium nitrate hexahydrate was mixed with 
the tin (II) chloride pentahydrate and 
subsequently, 5 ml PEG was added to the 
resulting mixture. The mixture was further stirred 
for another 30 min and thereafter, 0.5M NaOH 
solution was added dropwise until the pH 
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reached upto 12. The resulting mixture was then 
stirred for an additional 2 hours at 60°C. After 
completion of reaction, a thick off-white 
precipitate was formed at the bottom of the flask. 
The precipitate was collected and thoroughly 
rinsed with deionized water and ethanol to 
eliminate any impurities. The precipitate was 
dried at 60°C in a hot air oven for 10 hours. After 
drying, it was collected and ground using a 
mortar and pestle. The resulting powder was 
then placed in a crucible and calcinated at 450°C 
for 2 hours in a muffle furnace. After calcination 
tin oxide NPs were obtained. Pure and Mg-doped 
SnO2 NPs are named as SM0, SM5, SM10 and 
SM15, where 0, 5, 10, and 15 represent the 
weight percentage of Mg in Mg-doped SnO2 NPs. 
 

2.3 Characterization Techniques 
 
The purity, crystalline phase, and structure of 
synthesized NPs were analyzed using X-ray 
diffraction (XRD) with a Bruker D8-Advance 
diffractometer equipped with Cu Kα radiation (λ = 
0.15418 nm. Fourier transform infrared (FTIR) 
spectra were recorded on an Alpha 200855 FTIR 
system. Optical properties were studied using 
UV-Vis spectrophotometer (LAMBDA 365, 
PerkinElmer) to measure absorbance.   
 

2.4 Photocatalytic Degradation 
Experiment 

 
The photocatalytic performance of the 
synthesized pure and Mg-doped SnO2 NPs was 
evaluated by analyzing the degradation of crystal 
violet (CV) dye at a concentration of 10 mg/L 
under solar irradiation. The photocatalytic 
degradation of all the samples was examined by 
dispersing 20 mg catalyst in 100 ml dye solution. 
Before exposing the CV/photocatalyst solution to 
sunlight, the solutions were magnetically stirred 
for 1 hour at room temperature to attain 
adsorption-desorption equilibrium. After 
confirming the adsorption-desorption equilibrium, 
the photocatalysis was initiated by irradiating the 
CV/photocatalyst solution to sunlight. The dye 
degradation was tracked by periodically taking 2 
ml samples from the suspension and measuring 
their absorbance. The absorption spectra were 
recorded using UV–VIS spectrometer after 
centrifugation was performed to eliminate the 
suspended catalyst particles from the 
suspension. A UV–Visible spectrophotometer 
was employed to monitor how the concentration 
of CV dye changed over time. The CV solution 
were placed back into the beaker to maintain a 
consistent volume of the dye solutions after 

measuring the absorbance at each time point. 
The kinetics of CV photodegradation was studied 
using a pseudo-first-order kinetic equation (1) 
derived from the Langmuir-Hinshelwood model 
(Khairy & Zakaria, 2014): 
 

𝑙 𝑛(𝐶𝑜 𝐶𝑡⁄ ) = 𝑘𝑇              (1) 
 

where CO is the initial concentration of the dye (0 
min), and Ct is the concentration of dye at time t. 
The rate constant, k, or equilibrium constant, is 
determined by analyzing the slope of the graph 
that plots 𝑙 𝑛(𝐶𝑜 𝐶𝑡⁄ )  against reaction time (t), 
according to relation (2) (Abraham et al., 2016): 
 

𝑘 = 2.303 × 𝑠𝑙𝑜𝑝𝑒                        (2) 
 

The percentage efficiency (R %) of a 
photocatalyst, was determined utilizing Equation 
(3) (Senthil Kumar et al., 2015): 
 

Degradation efficiency % = (
𝐶𝑂−𝐶𝑡

𝐶𝑜
) × 100    (3) 

 

This formula expresses the efficiency as a 
percentage by comparing the reduction in 
contaminant concentration to the initial amount. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Structural Analysis 
 

Fig. 2 shows the XRD patterns of pure and Mg 
(5, 10 and 15 wt.%) doped SnO2 NPs. All the 
samples are indexed with the tetragonal rutile 
phase of SnO2. The diffraction peaks observed 
correspond to the (110), (101), (200), (211), 
(002), (310), (112), (202), (321) and (222) 
crystalline planes of the cassiterite phase of 
tetragonal SnO2 at 2θ values of 26.69, 33.87, 
38.01, 51.97, 57.93, 61.76, 65.38, 71.67, 78.61 
and 84.01, respectively. These planes are 
aligned with the standard JCPDS card number 
41-1445 (Kim et al., 2016). The average 
crystallite sizes (D) of the synthesized samples 
were determined using the Scherrer equation 
(Manjula & Selvan, 2017) (4): 
 

𝐷 =
𝑘′𝜆

𝛽𝐶𝑜𝑠𝜃
                          (4) 

 

The constant  𝑘′ is Scherrer constant or particle 
shape factor k having value 0.9, while λ 
represents the X-ray wavelength, which is 0.154 
nm. The variables β and θ are full width at half 
maximum (FWHM) and diffraction angle, 
respectively. The absence of Mg peak in the 
XRD pattern could be attributed to the effective 
dispersion of Mg within the SnO2 NPs, as well as 
the low concentration of Mg.  
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Microstrain (ε), lattice parameters 'a=b' and 'c' 
and lattice strain (δ) was determined using the 
following equations (5-7) (Madiba et al., 2017; 
Mirzayev et al., 2018; Sudha et al., 2016): 
 

𝜀 =
𝛽

4tan𝜃
              (5) 

 
1

𝑑2 =
ℎ2+𝑘2

𝑎2 +
𝑙2

𝑐2             (6) 

 

𝛿 =
1

𝐷2                      (7) 
 

Where h, k, and l represent the Miller indices, 
a=b and c are the lattice parameters, and d 
denotes the interplanar spacing. The average 
crystallite size, exhibited a slight variation when 
Mg was doped under the same experimental 
conditions. The decrease in crystallite sizes upon 
doping is attributed to the distortion caused in the 
SnO2 lattice by the incorporation of Mg2+ ions. 
This distortion reduces nucleation and impedes 
the growth rate of SnO2 crystal grains (Lavanya 
et al., 2012). Moreover, lattice parameters show 
no significant change, likely because the Mg+2 
dopant ion (72 nm) is nearly the same size as the 
host Sn+4 ion (71 nm). The structural parameters 
of pure and Mg-doped SnO2 NPs are given in 
Table 1. 
 

3.2 Fourier Transform Infrared (FTIR) 
Analysis 

 

Fig. 3 presents the FTIR spectra for both pristine 
and Mg-doped SnO2 NPs, recorded over the 

wavenumber range of 400 to 4000 cm⁻¹ after the 
sample powder was diluted with KBr. The broad 
and intense band in the range of 3000–3600 
cm−1 are the characteristic of stretching 
vibrational modes of O–H bond, which are 
attributed to the Sn-OH groups and adsorbed 
water molecules (Farrukh et al., n.d.; Pascariu et 
al., 2016). The peaks observed around 1643 
cm−1 correspond to the O-H bending vibrations 
are associated with residual water molecules 
used during mixing of KBr binder for 
measurement (Nachiar & Muthukumaran, 2019). 
The feeble band observed at 2329 cm−1 might be 
attributed to the absorption of CO2 from ambient 
air atmosphere (Jouhannaud et al., 2008). The 
symmetric and asymmetric C–H vibrations were 
observed at 2967 cm−1 and 2863 cm−1, 
respectively. This implies that the NPs are 
essentially capped with the ethylene glycol used 
in their synthesis (Nachiar & Muthukumaran, 
2019; Singh et al., 2014). The prominent 
absorption bands observed in the lower-
wavenumber region (400–800 cm−1), particularly 
at 502 and 612 cm−1, are characteristic IR 
fingerprints of the doped SnO2 NPs. These 
bands correspond to anti-symmetric O–Sn–O 
vibrations and the Sn–O (terminal oxygen 
vibration of Sn–OH) lattice-extending vibrations, 
respectively (Manjula & Selvan, 2017; Dobrucka 
et al., 2018). Furthermore, the bands                    
detected around 1379 cm-1 are ascribed to the 
bending vibrations of the C=O bond (Zhou et al., 
2018). 

 

 
 

Fig. 2. X-ray diffraction of pure SnO2 and SnO2: Mg NPs. 
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Table 1. The structural parameters of Un-doped and Mg-doped SnO2 NPs. 
 

Sample (hkl) 2θ(o) β (×10-3) rad Average crystallite size D (nm) δ (×10-2lines nm-2) ε (×10-3) Lattice constants (Ǻ) 

a c 

SM0 110 26.69 0.0332 4.49 5.437 0.0350 4.7404 3.1929 
101 33.87 0.0266 

 
3.388 0.0219 

SM5 110 26.75 0.0375 4.39 6.951 0.0395 4.7369 3.1859 
101 33.95 0.0292 

 
4.081 0.0239 

SM10 110 26.65 0.0406 3.80 8.147 0.0429 4.7212 3.1962 
101 33.91 0.0304 

 
4.413 0.0249 

SM15 110 26.66 0.0361 3.72 6.421 0.0380 4.6885 3.1797 
101 33.87 0.0304  4.422 0.0250 

 

 
 

Fig. 3. FTIR spectra of pure and Mg-doped SnO2 NPs. 
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Table 2. Absorption band position along with corresponding assigned functional groups in 
samples 

 

 
However, no specific peaks corresponding to 
Mg–O bonds were observed, indicating the 
incorporation of Mg into the SnO2-structured 
matrix as observed in the XRD analysis. A minor 
variation is noticed in the intensity and                  
position of these characteristic bands. This effect 
is due to the larger ionic radii of alkaline metal 
ions Mg2+ compared to Sn4+, which                       
alters the SnO2 lattice. Additionally, these dopant 
ions may occupy interstitial sites,                      
contributing to shift in the IR absorption spectrum 
(Asaithambi et al., 2020). Absorption band 
position along with corresponding assigned 
functional groups in samples are given. In            
Table 2. 
 

3.3 Optical Studies 
 

Fig. 4 (a) represents the optical absorption 
spectra for pure and Mg-doped SnO2 NPs 
recorded in the range of 300 to 800 nm. 
Absorbance is expected to be influenced by 
various factors, including band gap, oxygen 
deficiency, surface roughness, and impurity 
centers (Ahmed et al., 2011). The absorption 
edge of various samples varies with the 
concentration of Mg in SnO2 NPs. As the Mg 
content increases in the SnO2 host, a noticeable 
shift towards lower wavelengths (blue shift) is 
observed in the absorption edge which may lead 
to an increment in band gap. 

 

 
 

Fig. 4. (a) UV-visible absorption spectra and (b) Tauc’s plot of pure and Mg-doped SnO2 NPs. 

Absorption bands (~ cm-1) Functional group Reference 

473 Sn-O stretching mode of vibration (Manjula & Selvan, 
2017; Dobrucka et al., 
2018)  

607 O-Sn-O stretching mode of vibration (Manjula & Selvan, 
2017; Dobrucka et al., 
2018)  

1379 C=O bond stretching vibration (Zhou et al., 2018)  
1637 Bending vibration of surface hydroxyl (-OH) 

groups 
(Kumar et al., 2015)  

2863 Asymmetric vibration attributed to C-H 
bonds 

(Singh et al., 2014)  

2967 Symmetric vibration attributed to C-H bonds (Nachiar & 
Muthukumaran, 2019; 
Singh et al., 2014) 

3332 Stretching vibration of surface hydroxyl (-
OH) groups 

(Kumar et al., 2015)  
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The optical bandgap of pure and Mg-doped 
SnO₂ NPs were determined using Tauc plots 
method equation (Asaithambi et al., 2019) (8): 
 

(𝛼ℎ𝜈) = 𝐵(ℎʋ − 𝐸𝑔 )𝑛            (8) 

 
Here, α represents the absorption coefficient, B 
is a constant, ν denotes frequency, h stands for 
Planck’s constant, and Eg represents the 
bandgap energy. The parameter n equals ½ 
specifically for the direct bandgap of the 
semiconductor. 
 
The optical band gap (Eg) can be determined by 
extrapolating linear region of a plot of (αhν)2 vs 
hv. Fig. 4(b) graphically represents the plot of 
(αhν)2 versus hν for the synthesized SnO2 NPs. 
The measured band gap values for Mg-doped 
SnO2 with doping concentrations of 0%, 5%, 
10%, and 15% are 3.21 eV, 3.26 eV, 3.33 eV, 
and 3.42 eV, respectively. The results showed 

that doping Mg led to an increase in the band 
gap energy of pure SnO2 resulting in a blue shift. 
The rise in the band-gap suggested that Mg was 
effectively integrated into the SnO2 crystal 
structure. The observed rise in Eg could be 
attributed to the quantum confinement effect 
(Mohana Priya et al., 2016). Moreover, observed 
increase in the band gap with an increase in Mg 
doping can be attributed to the dominance of d-d 
transitions over sp-d transitions (Nyamukamba et 
al., 2017). 
 

3.4 Photocatalytic Degradation Studies 
 

The synthesized pure and Mg-doped SnO2 NPs 
were employed as photocatalysts for the 
degradation of CV dye under solar irradiation. 
The absorption of CV dye was measured using 
UV–Visible spectrophotometer. The UV–Visible 
spectra for the CV dye solutions degraded by 
synthesized samples as a photocatalyst are 
displayed in Fig. 5. 

 

 
 

 
 

Fig. 5. UV-Vis absorption spectra of CV dye for (a) SM0, (b) SM5, (c) SM10, and (d) SM15 
photocatalyst. 
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Table 3. Band gap, Rate constant (k) and linear regression coefficient R2 values of the 
photocatalyst 

 

Samples Band gap  
Eg (eV) 

Irradiation 
time (min) 

Degradation 
efficiency (%) 

Rate constant 
K (min-1) 

R2 

SM0 3.21 105 67 0.02073 0.97 
SM5 3.26 105 72 0.02464 0.95 
SM10 3.33 105 81 0.03385 0.96 
SM15 3.42 105 93 0.05527 0.91 

 
The change in dye concentration with time of 
reaction for pure and Mg-doped SnO2 NPs is 
depicted in Fig. 6 (a). From Fig. 6(a), it can be 
observed that highest effectiveness is achieved 
by the SM15 photocatalyst. The dye degradation 
process follows pseudo-first-order kinetics. The 
graph for pseudo-first-order kinetics is plotted 
with ln (CO/Ct) against the reaction time for each 
of the synthesized photocatalysts. Fig. 6 (b) 
represents the pseudo-first-order kinetic plots for 
all the samples. The linearity observed in the 
plots for all the samples suggested that pseudo-
first-order kinetics are applicable. The                  
enhanced photocatalytic performance is 
attributed to a larger surface area, the availability 
of more reactive ions, and an increase in active 
sites.  
 
The rate constant for the degradation reactions 
of the synthesized photocatalysts were 
determined using equation (2). The rate 
constants calculated for the degradation of CV 
dye are plotted against the synthesized 
photocatalyst, as illustrated in Fig. 7 (a). The 
calculated values of rate constants are 0.02073, 
0.02464, 0.03385 and 0.0552 for SM0, SM5, 
SM10 and SM15, respectively. Table 3. shows 
the linear regression coefficient (R²), reaction 
rate constant (k), and percentage of degradation 
efficiency for each sample for the degradation 
process of CV dye.  
 
The degradation of the CV dye under solar light 
exposure, using 10 mg of the prepared 
photocatalysts, is illustrated in Fig. 7(b) by 
plotting the efficiency of degradation as a 
function of reaction time. SM15 photocatalyst 
shows maximum degradation efficiency of 93% 
over time of 105 min whereas SM0 photocatalyst 
possesses degradation efficiency of merely 67%. 
The low efficiency of pure SnO2 can be attributed 
to the rapid recombination of charge carriers. 
This rapid recombination reduces the probability 
of the movement of the photo-generated charge 
carriers reaching the catalyst surface, which 

solar light in turn diminishes photocatalytic 
activity (Maleki et al., 2015; Kumar et al., 2017).  
 
The findings indicated that 15 wt% Mg-doped 
SnO2 photocatalysts exhibit outstanding 
photocatalytic performance in breaking down CV 
dye. The enhancement in photocatalytic 
performance resulting from Mg doping can be 
linked to a blue shift, which is explained by the 
Burstein–Moss effect (Karthikeyan & 
Pandiyarajan, 2010). The Fermi level in Mg-
doped SnO2 NPs may be positioned at a higher 
energy level, causing a shift in the absorption 
edge towards shorter wavelengths. A larger band 
gap energy is associated with a higher redox 
potential of electron-hole pairs, which in turn 
leads to enhanced photocatalytic activity. Similar 
results are reported by Behnajady & Tohidi, 
(2014). Also based on the XRD results of this 
study, the reduction in crystallite size leads to an 
increased surface-to-volume ratio, which 
significantly improves the photocatalytic 
capabilities (Bindu & Thomas, 2014). It is 
important to note that a material with lower band 
gap doesn't necessarily exhibit higher 
photocatalytic activity as might be expected. The 
photocatalytic performance of SM0 photocatalyst 
with calculated band gap of 3.21 eV was 
surprisingly lower than that of SM15 
photocatalyst, which had band gap of 3.42 eV, 
despite expectations based on their band gap 
values. This observation indicated that narrowing 
the band gap can enhance the absorption of 
light, although it does not necessarily lead to 
improved photocatalytic activity under visible light 
conditions. This suggested that factors beyond 
band gap narrowing may influence the 
photocatalytic activity of SnO2 NPs. These 
factors may include rate of electron-hole 
recombination, hydrophilicity, and variations in 
surface area and surface properties that can 
enhance adsorption. Table 4. Presents a 
comparative analysis of our study alongside 
other recent research on the degradation of CV 
dye using various photocatalysts. 
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Fig. 6. (a) Relative concentration vs time plot of CV dye (b) Pseudo first-order kinetics for the 
degradation of CV dye for different catalysts 

 

   
 
Fig. 7. (a) Representation of rate constant through Histogram (b) Time-dependent degradation 

efficiency of the samples 
 

3.5 Photocatalytic Degradation 
Mechanism 

 
Fig 8. illustrates the process of photocatalytic 
degradation of CV dye employing Mg-doped 
SnO2 photocatalyst. When exposed to sunlight, 
SnO₂ can absorb photons causing an electron to 
move from the valence band to the conduction 
band (Kumar et al., 2017). Generally, these 
electron-hole pairs tend to recombine rapidly, 
leaving insufficient time for them to engage in 
any catalytic reaction (Sharma et al., 2019).  The 
recombination of electron-hole pairs can be 
reduced, by incorporating Mg into SnO2 NPs. 
Hence, electrons and holes move more efficiently 
to the surface of catalyst, where they engage in 
redox reactions with adsorbed species. The 
isolated holes in the valence band (VB) of SnO2 

can interact with water molecules to produce 

hydroxyl radicals. At the same time, the electrons 
that are captured by Mg ions are transferred to 
oxygen molecules, leading to the formation of 
reactive superoxide radicals (Sadhanala et al., 
2018). These superoxide radicals are then 
converted into hydroxyl radicals through multiple 
electron reduction steps, as described in 
Equations (9-14). The reactive radicals produced 
may partially or entirely oxidize organic 
pollutants, transforming them into harmless 
substances or degraded products i.e., CO2 and 
H2O. This proposed mechanism is                            
depicted in Fig. 8, which illustrates the               
potential degradation process of organic 
pollutants under sunlight exposure. The             
reaction mechanism for the photocatalytic 
degradation of CV dye in the presence of 
sunlight can be described as follows (Ahmed et 
al., 2019): 
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Table 4. Comparison of photocatalytic activity of present work with other nanomaterials for the degradation of different organic dyes 
 

Photocatalyst  Dose 
(mg) 

Dye  Dye  
concentration (mg/l) 

Light source Degradation 
time (min) 

Degradation 
Efficiency (%) 

References 

Mg-doped 
CuFeO2 

   50 Methylene Blue (MB) 50 ppm (50 ml) Visible light 
source. 

90 92.7 (Chang et al., 
2021) 

ZnO 150 Crystal Violet (CV) 10 (100 ml) UV irradiation 120 90 (Franco et al., 
2019) 

Gd doped BFO 200 Crystal Violet (CV) 20 Mercury lamp 
250 W 

105 84.5 (Kossar et al., 
2021) 

Mg-doped ZnO 200 Methylene blue (MB) 10–5 M (200 mL) Xenon lamp 60 99 (Sa-nguanprang 
et al., 2019) 

Titanate 
nanosheets (TNT) 

20 Crystal Violet (CV) 200 (20ml) UV lamp 16 
W 

75 100 (Rashad et al., 
2019) 

Mg-doped TiO2 100 Methylene orange 
(MO) 

10 (100 ml)  UV light 120 47.82 (Athira et al., 
2020) 

N doped SnO2 100 Crystal Violet (CV) 20 × 10−6 M (100 ml) UV Light 
irradiation 

90 73 (Bhawna et al., 
2023) 

Glutamine-
assisted SnO2 
nanorods 

10 Crystal Violet (CV) 20 (100 ml) Mercury lamp 
250W 

60 97.3 (Alharbi et al., 
2022) 

Mg-doped 
CuFeO2 

50 Methylene Blue (MB) 50 ppm (50 ml) Visible light 
source. 

90 92.7 (Chang et al., 
2021) 

SrFe2O4 50 Crystal Violet (CV) 10 (50 ml) Microwave 
irradiation 

10 88.6 (Liu et al., 2018) 

Mg-doped ZnO 50 Rhodamine B (RhB) 20 ppm (150 ml) UV 125 W 120 78 (Pradeev raj et 
al., 2018) 

BaFe2O4 50 Crystal Violet 10 (50 ml) Microwave 
irradiation 

10 96.6 (Liu et al., 2016) 

Mg-doped CuO 200 Methylene Blue (MB) 20 μM (300 mL) UV Hg lamp 
450 W 

180 95.71 (Azharudeen et 
al., 2022) 

Sn@C-dots/TiO2 t 60 Crystal Violet (CV) (100 ml) Sunlight 210 60 (Kumar et al., 
2017)  

Mg-doped CeO2 10 Methylene Blue (MB) 
dye 

20 ppm (200 ml)  UV (20 W) 120 75.2 (Murugan et al., 
2018) 
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Photocatalyst  Dose 
(mg) 

Dye  Dye  
concentration (mg/l) 

Light source Degradation 
time (min) 

Degradation 
Efficiency (%) 

References 

MoS2 NFs 20 Crystal Violet (CV) 0.1 (100 ml) Sunlight 40 99.3 (Alharbi et al., 
2022) 

SM0 20 Crystal Violet (CV) 10 (100 ml) Sunlight 105 67 This work 

SM5 20 Crystal Violet (CV) 10 (100 ml) Sunlight 105 72 This work 

SM10 20 Crystal Violet (CV) 10 (100 ml) Sunlight 105 81 This work 

SM15 20 Crystal Violet (CV) 10 (100 ml) Sunlight 105 93 This work 
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Fig. 8. Mechanism of Mg-doped SnO2 NPs Facilitated Photocatalytic Breakdown of Crystal 
Violet (CV) Dye 

 

Mg − SnO2 + ℎ𝜈 ⟶   𝑀𝑔 − 𝑆𝑛𝑂2 + 𝑒(𝐶𝐵)
− +  ℎ(𝑉𝐵)

+  

(9) 
 

 𝑀𝑔 − 𝑆𝑛O2  + 𝑒(𝐶𝐵)
− + 𝑂2  ⟶     

𝑜 𝑂2
−      (10) 

 
   

𝑜 𝑂2
−  + 𝑒− + 2𝐻+ →  𝐻2𝑂2        (11)  

      
𝐻2𝑂2 + 𝑒−  ⟶  °𝑂𝐻 + 𝑂𝐻−      (12)    

  

Mg − SnO2 +  ℎ(𝑉𝐵)
+ + 𝐻2𝑂 ⟶  𝐻+ + °𝑂𝐻 (13)                  

 
Organic pollutant +  °𝑂𝐻 ⟶
𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠         (14) 
 

4. CONCLUSION 
 

Pure and Mg-doped SnO2 NPs were synthesized 
using the chemical co-precipitation method and 
used as a photocatalyst to degrade Crystal Violet 
(CV) dye under sunlight irradiation. The XRD 
analysis reveals that the nanoparticles possess 
an average size of 4-3 nm and exhibit tetragonal 
rutile phase of SnO2. The FTIR spectra validated 
the synthesis of Mg-doped SnO2 NPs, indicating 
the presence of both Sn-O-Sn and Sn-O bands. 
The band gap of the samples was explored using 
UV-visible absorption spectroscopy, revealing an 
increment in band gap from 3.21 eV for undoped 
(SM0) to 3.42 eV for 15 wt% (SM15) Mg-doped 
SnO2 NPs. Among the tested samples, 15 wt% 
SnO2 sample exhibited the most effective 
photocatalytic activity. The study revealed that a 
photocatalyst with a lower band gap does not 
necessarily exhibit superior photocatalytic activity 
compared to wide band gap photocatalysts under 
visible light irradiation, contrary to what might be 

anticipated. Other factors like surface area, 
electron-hole recombination and hydrophilicity 
can surpass band gap narrowing in boosting the 
overall efficiency of the photocatalyst. This 
research could offer novel perspectives on the 
development of semiconducting metal oxide 
nanoparticles with potential applications in 
photocatalysis. 
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