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normale supérieure (PSL University), Paris, France, 8 Laboratoire de physique théorique, CNRS, Sorbonne
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Abstract

Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a

vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant informa-

tion from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited,

because little is known about TCR–disease associations. We present Antigen-specific Lym-

phocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach

that identifies TCR sequences actively involved in current immune responses from a single

RepSeq sample and apply it to repertoires of patients with a variety of disorders — patients

with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or

subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with

independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it

is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR

variants associated with diseases and conditions, which can be used for diagnostics and

rational vaccine design.

Introduction

A major goal of quantitative immunology is to be able to detect and predict T cell receptor

(TCR) specificity from high-throughput sequencing of TCR repertoires (RepSeq) data. Cur-

rent methods that rely on epitope-specific in vitro experiments such as MHC multimer assays

[1–4] require knowledge of the individual’s HLA type as well as the presented peptide and do

not capture the context of the immune response in vivo. Alternatives based on mining public

TCRs from large cohorts of patients with a common condition [5–9] are very costly and only

capture TCRs specific to widely shared HLA/epitope pairs, ignoring the private response.

Another approach is to use longitudinal data to identify responding clonotypes [10], but this
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requires carefully planned experimental setups with time points taken before the infection,

which is not always possible. Antigen-specific Lymphocyte Identification by Clustering of

Expanded sequences (ALICE) overcomes these issues by predicting TCR involved in the

immune response from single repertoire snapshots of single individuals, using sequence

similarity.

Recent work has shown that TCRs recognizing the same epitopes often have similar

sequences [2–4, 11, 12]. However, highly similar TCRs may also arise regardless of their bind-

ing properties, by virtue of their high generation probability by V(D)J recombination [13, 14],

with clusters of similar TCRs found even in naive repertoires [2, 15]. To correct for those naive

clusters, ALICE evaluates the number of similar sequences relative to the baseline expectation

from V(D)J recombination statistics, allowing it to identify clusters of TCRs responding to the

same antigen (as schematized in Fig 1a).

For each TCR amino acid sequence in the data, ALICE uses a stochastic TCR recombina-

tion model [18, 19] to estimate the fraction of the repertoire composed of TCR variants, called

‘neighbors’, differing by at most 1 amino acid in their Complementarity Determining Region

3 (CDR3). This allows us to predict theoretically the number of neighboring clonotypes (nucle-

otide sequences) for each TCR under the null hypothesis of no antigen-driven TCR selection

and identify TCRs with a significantly higher number of neighbors in the data than the null

expectation (see Materials and methods). We refer to such significant results as ALICE signa-

tures or hits. Although the basic version of the algorithm discards clonotype abundances and

should thus be sensitive to sequencing depth, we also implemented an advanced (but much

slower) version that includes read counts and shuffles them among clonotypes in the null (see

Materials and methods).

Results

As a minimal requirement for its validity, we applied our algorithm to published naive

(CD45RA+CCR7+) and effector memory (CD45RA−CCR7−) TCR beta repertoires from

Thome and colleagues [16]. Our algorithm identified multiple signatures in the memory sub-

sets and virtually no significant hits in the naive subsets (Fig 1b and S1 Fig), in agreement with

the definition that naive cells have never responded to antigen stimulation.

To further validate the method’s ability to detect clonal expansion during an ongoing

immune response, we applied it to published TCR beta repertoires from mixed lymphocyte

reaction (MLR) assay [17]. In this assay, peripheral blood mononuclear cells (PBMCs) from

2 individuals (a responder and a stimulator) are mixed, and reactive T-cell clones from the

responder’s repertoire proliferate in response to the antigens presented by the stimulator’s

cells. ALICE identified many more hits in the responder’s repertoire in the MLR culture than

in unstimulated cells (Fig 1c). Furthermore, the clonotypes identified by ALICE are enriched

in MLR culture compared to bulk PBMCs (Fig 1d), clearly demonstrating that these hits corre-

spond to antigen-specific clonal expansions.

We then asked whether our method could identify TCRs specific to a particular target

using an in vivo acute viral infection model. In a previous study, peripheral blood of 6 donors

was collected, and their TCR beta repertoire was sequenced at several time points before and

after immunization with live yellow fever (YF) vaccine (YF-17D) [10]. Clonotypes that signifi-

cantly expanded following vaccination were identified by temporal comparisons. Notably,

even the most strongly expanded clonotypes after YF immunization are not the most abundant

clones in the repertoire even at the peak of the response (day 15 time point), and the overall

clone size distribution on day 15 is similar to the one observed before vaccination. Thus, it is

not possible to identify expanded clonotypes using only their frequencies on day 15. Here, we
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we used paired samples of patients before and

after the first dose of therapy. Links to all data sets
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sample_data. All code for the ALICE pipeline is

available at https://github.com/pogorely/ALICE. The

numerical values presented in all the plots can be

found in the Supporting Information data file

(S1_Data.xlsx) as indicated in the manuscript.
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applied ALICE to each time point to identify responding clonotypes independently, using only

single repertoire snapshots.

ALICE identified more immune response signatures on the peak of response (day 15) than

before immunization (day 0) in all donors (Fig 2a, left) except one who was probably undergo-

ing another immune response at the moment of immunization (see S2 Fig). Applying the

advanced version of ALICE with read counts yielded almost identical results (see S3 Fig). To

validate ALICE’s expanded clonotypes, we compared its predictions to known YF-17D–reac-

tive sequences obtained from longitudinal data in the source study. We found that 35% to

73% of ALICE hits on day 15 were highly similar (same VJ combination and up to one CDR3

amino acid mismatch) to previously identified YF-specific clonotypes (Fig 2a, right).

Next, we applied our approach to peripheral blood TCR beta repertoire samples from 2 cyto-

toxic T-lymphocyte-associated protein 4 (CTLA4) checkpoint blockade cancer immunotherapy

Fig 1. Identification of antigen-responding clonotypes using their recombination-based frequency. (a) ALICE identifies locally enriched regions of the TCR

sequence space, represented here as a graph. Vertices are TCR clonotypes observed in the repertoire, and edges connect sequences differing by at most 1 CDR3 amino

acid. Antigen exposure induces the proliferation of multiple clonotypes with similar sequences recognizing a few immunodominant epitopes. ALICE identifies

clonotypes with a higher numbers of neighbors than expected by a null model of recombination, separating clusters of antigen-responding clonotypes (in red) from

clusters arising from recombination statistics (blue, green, and purple clusters). (b) The number of significant results (normalized by the total number of unique

nucleotide sequences) found in naive- versus memory-published TCR beta repertoires from Thome and colleagues [16] demonstrates ALICE’s ability to selectively

detect immune response signatures in the memory subset only. (c) Normalized number of significant hits found in published repertoires of MLR cultures compared to

an unstimulated control [17]. The algorithm finds many more hits in the MLR repertoire. (d) Most clonotypes identified as antigen-responding in MLR culture

expanded during the assay, as evidenced by their higher frequency in MLR culture than in the control (red dots). By contrast, clonotypes identified in the unstimulated

repertoire (blue crosses) mostly remain unexpanded after the assay, as they probably are signatures of previous immune responses. The individual numerical values

could be found in S1 Data. ALICE, Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences; CDR3, Complementarity Determining Region 3;

MLR, mixed lymphocyte reaction; PBMC, peripheral blood mononuclear cell; TCR, T cell receptor.

https://doi.org/10.1371/journal.pbio.3000314.g001
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studies [20, 21]. We found more ALICE immune response signatures after the treatment than

before (Fig 2b and S4 Fig). The number of these signatures is a better measure than previously

proposed summary statistics of peripheral TCR repertoires aimed at detecting the effect of

immunotherapy (richness and Shannon entropy): it discriminated pre- and post-treatment

Fig 2. ALICE hits are found in various conditions. (a) Identification of reactive clonotypes following immunization. Left panel shows the total number of ALICE

immune response signatures before (day 0) and on the peak of the response to YF vaccine (day 15). Right panel shows the number of clonotypes identified by the

algorithm that have high similarity to clonotypes significantly expanded after YF immunization from Pogorelyy and colleagues [10]. (b) Analysis of peripheral blood

repertoires before and after checkpoint blockade cancer immunotherapy [20]. The larger number of ALICE signatures after (red) compared with before (blue)

therapy represent clones triggered by the therapy. (c) ROC curves for distinguishing pre- and post-immunotherapy repertoires. The number of ALICE hits (red,

AUROC = 0.77) is a better discriminant than the number of unique clonotypes (blue, AUROC = 0.65). The individual numerical values can be found in S1 Data. (d)

Graph of expanded clonotypes in synovial fluid of 4 AS patients. Vertices represent significant clonotypes identified by the algorithm, and edges connect clonotypes

with at most 1 amino acid mismatch. Zero-degree vertices are not shown. Vertices are colored according to the patients, and split vertices represent public sequences

identified in several donors. The 2 sequences shared among all 3 HLA-B27+ patients were previously associated with AS and HLA-B27. (e) While the classical sequence

logo of the central cluster in panel D is dominated by germline-encoded positions (top), selection factors highlight position-specific pressures acting on the expanded

sequences (bottom). ALICE, Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences; AS, ankylosing spondylitis; AUROC, area under the

ROC; ROC, receiver operating characteristic; YF, yellow fever.

https://doi.org/10.1371/journal.pbio.3000314.g002

ALICE: TCR response from single repertoire snapshots

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000314 June 13, 2019 4 / 13

https://doi.org/10.1371/journal.pbio.3000314.g002
https://doi.org/10.1371/journal.pbio.3000314


time points better than the number of unique clonotypes (richness) proposed in Robert and

colleagues [20], as evidenced by the comparison of their receiver operating characteristic

curves (Fig 2c). ALICE hits increased significantly after immunotherapy, both in the data from

Robert and colleagues [20] (p = 0.0016 for ALICE versus p = 0.0005 for richness and p = 0.04

for entropy, Wilcoxon signed rank test) and in the data from Subudhi and colleagues [21]

(p = 0.0003 for ALICE versus p = 0.06 for richness and p = 0.6 for entropy).

In contrast to these other measures, ALICE identifies particular clonotypes that are likely to

be activated by the therapy. Tracking of such clonotypes in time and in the tumor tissue could

provide insights into therapy efficiency and adverse effects.

Lastly, we asked whether ALICE was able to identify condition-associated clonotypes in

patients with autoimmune diseases. We analyzed 4 TCR beta repertoires of CD8+ T cells from

the synovial fluid of ankylosing spondylitis (AS) patients from Komech and colleagues [8]. Fig

2d shows clusters of ALICE-predicted clonotypes in 3 HLA-B27+ donors and 1 HLA-B27−

donor. Although most predicted TCRs were patient-specific, 2 clonotypes were independently

found in all 3 HLA-B27+ patients but not in the HLA-B27− patient. These 2 clonotypes exactly

coincide with previously reported public clonotypes in a population of HLA-B27+ patients

with AS [7, 8] and were also found in synovial fluid spectratyping of patients with AS and reac-

tive arthritis [22, 23]. The independent identification of these sequences by ALICE demon-

strates the relevance of its predictions, as well as suggests that these public clonotypes actively

participate in the immune response in inflamed joints. ALICE also predicts previously unre-

ported patient-specific expanded clonotypes, which population studies cannot detect by

design.

To visualize CDR3 sequence motifs identified by the algorithm, we developed a novel

approach to highlight differences in amino acid composition relative to the background

recombination statistics (similar to [3]), based on a position-weight matrix selection model

learned from the TCR sequence subset (as in [24], see Materials and methods). In a classical

sequence logo derived from the central cluster of Fig 2d, positions encoded in the germline by

V and J segments at the two ends of the CDR3 are very conserved and dominate the logo (Fig

2e, top). By contrast, our selection logo highlights amino acids that are enriched relative to that

baseline (Fig 2e, bottom), showing a high enrichment in aromatic (Y and F) residues at CDR3

position 8. We speculate that these residues form contacts with the antigen that are crucial for

TCR recognition.

Discussion

Our method can thus be applied to variety of conditions for which information about HLA

type or epitope is not available, from autoimmune disease to infection models. While ALICE

has different principles and scope than the computational method of Pogorelyy and colleagues

[6], which was designed to analyze the public repertoire of cohorts, the two approaches could

be combined to leverage the statistical power of large cohorts with the information from

sequence similarity exploited by ALICE.

Our approach has several limitations. It can only identify responding TCR with high

enough frequencies. A significant fraction of responding TCR are rare and individual specific

[10, 12, 15] and are unlikely to have similar variants and thus to be detected by the algorithm.

Extending our method to more refined distance measures (e.g., [3]) could help mitigate this

issue. Another limitation is a natural consequence of its main advantage — antigen indepen-

dence. In individuals with multiple conditions, the algorithm will identify clonotypes associ-

ated with all of them, and potentially with memory clones from previous immune responses

as well, with no way of telling them apart. Repeating the analysis at different time points

ALICE: TCR response from single repertoire snapshots
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(e.g., after clearance of an infection) can help to distinguish TCR associated with each condi-

tion. In S2 Fig, we performed such an analysis for the outlying YF vaccinee Q1, who was prob-

ably undergoing another transient immune response, and identified ALICE signatures that

were truly YF-specific. Finally, while ALICE can reliably detect expanded clonotypes from

TCRβ repertoire, specificity is ultimately determined by the full αβ clonotype. ALICE could be

extended to analyse αβ repertoires by estimating the joint probability of αβ recombinations

using the OLGA algorithm [25], because the two chains are largely independent in their

recombinations [26, 27].

As we have illustrated in our applications, the number of ALICE hits can be indicative of

the immune activity. This new repertoire-wide metric could be used in combination or com-

parison with other metrics such as clonality, diversity, or maximum clone frequency [16, 20,

21] to predict immune status. However, ALICE’s main advance is to be able to identify par-

ticular sequences, which can be studied across patients that share a condition to identify pub-

licly responding clones, as we did in the AS example. They could be tracked over time during

and after the disease to help design biomarkers for diagnostics and to understand the persis-

tence of immune memory. They could be searched in the repertoires of T-cell subpopula-

tions to gain insight into their immunological function. As more repertoire sequence

datasets associated with various conditions are being collected, ALICE could be used to rap-

idly grow databases of condition-specific TCR, with applications in the diagnostic and treat-

ment of diseases.

Materials and methods

ALICE statistical model formulation

The algorithm operates on a dataset of n unique nucleotide TCR sequences (clonotypes) with

a given VJ combination. The procedure is then applied to all VJ combinations present in the

data. Unique nucleotide sequences have corresponding amino acid sequences. The goal is to

find outlying sequences that have an abnormal number of nucleotide variants in the data that

differ by at most 1 amino acid. The algorithm considers distinct nucleotide sequences as sepa-

rate entities even if they have identical amino acid sequences, because they originate from dif-

ferent T-cell clones.

For each amino acid sequence σ, under the null hypothesis we expect the number of neigh-

bors d to be Poisson distributed:

P djsð Þ ¼ e� l ldd!
; ð1Þ

with mean λ = nSσ' ~ σ QPgen(σ'). The sum is over all possible similar variants σ' of σ. Here,

similarity σ' ~ σ is defined by having at most 1 amino acid mismatch, but other measures

could be used instead. Pgen(σ') is the probability to generate a given amino acid sequence σ'
by V(D)J recombination, and Q a rescaling factor accounting for thymic selection [6, 14]

that eliminates a fraction 1/Q of generated sequences. Its value was set to Q = 9.41 as the

average over all VJ combinations reported by Pogorelyy and colleagues [6]. There is an

option in the algorithm to use separate selection factors for different CDR3 lengths L
within each VJ class, QL|VJ. In this case, QL|VJ = Q × RL|VJ / SL'RL'|VJPdata (L'|VJ), where Q the

same scaling factor as above, Pdata (L|VJ) is the probability of CDR3 length L given the VJ

combination, and RL|VJ = Pdata (L|VJ)/Pgen (L|VJ), where Pdata (L|VJ) and Pgen (L|VJ) are the

distribution of CDR3 lengths in each VJ class in the data and in the simulated sequences,

respectively. We redid analysis for YF-vaccination datasets with this approach and got very

similar results (see S5 Fig).
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Estimating the generation probability of amino acid sequences

We estimated Pgen(σ) of amino acid sequences by Monte Carlo simulation, as described by

Pogorelyy and colleagues [6]. We generated 100 million TCRs with fixed VJ choice in silico
using the VDJ recombination model from Murugan and colleagues [18]. Sequences were then

translated to amino acids, and the overall frequency of each distinct amino acid sequence was

estimated by counting. The advantage of Monte Carlo simulations is that it can be done for all

sequences of interest simultaneously. The exact computation of Pgen of each sequence of inter-

est by OLGA [25] is available within the ALICE software and may be faster for datasets of

moderate sizes. Another option would be to use large number of published datasets [5, 28] and

treat the number of occurrences of each TCR sequence of interest in these datasets as a proxy

for TCR recombination probability, as implemented into VDJtools [29]. An implementation

of the corresponding routine for VDJtools software framework is described at http://vdjtools-

doc.readthedocs.io/en/master/annotate.html#calcdegreestats. Note that VDJtools implementa-

tion allows setting an arbitrary Levenstein distance threshold for defining neighboring clono-

types. Forcing clonotypes to have the same VJ/V segments or allowing segment mismatches is

also optional. The implementation relies on a precompiled control dataset instead of using a

generative VDJ rearrangement model; control datasets can be obtained from https://zenodo.

org/record/1318986.

ALICE pipeline

Nucleotide sequences with low numbers of reads may represent erroneous variants of high-

frequency clonotypes and thus inflate their neighbor counts and lead to false positives. Here,

we counted as neighbors only clonotypes with more than 1 read. To correct for sequencing

errors in the germline regions, clonotypes with the same CDR3 nucleotide sequence and V-

and J-segments were collapsed. To additionally filter sequencing errors, ALICE hits with

Monte Carlo–estimated neighborhood size of 0 were also discarded. For each amino acid

sequence σ present in the data, we count how many one-mismatch variants are also present in

the data, and we denote that number d(σ). The neighborhood of σ includes σ, meaning that dif-

ferent nucleotide variants of the same amino acid sequence are counted as valid neighbors. For

each σ such that d(σ)> 2, we generate all possible one-mismatch variants σ' in silico and calcu-

late their Pgen(σ') using Monte Carlo simulations as described above. Finally, we calculate a p-

value for each σ corresponding to the probability that σ has no less similar variants in null

model than in the data, Sd' � d(σ) P(d'|σ) using Eq 1. We correct p-values for multiple testing

using Benjamini-Hochberg (BH) correction and select clonotypes with BH-adjusted p< 0.001

as significant results (ALICE hits).

Number of neighbors per se is not enough to reliably identify responding

clonotypes

The main innovation of our approach is to use the probability of TCR sequence generation,

Pgen, to get the null model for the expected number of neighbors for each sequence in the data.

We wanted to quantify the improvement our null model provides on top of the initial cluster-

ing step. We expect the observed number of neighbors, d(σ), to grow after an immune chal-

lenge due to the expansion of many similar clonotypes. d(σ) scales with the total number of

possible neighbors (equal to n, the number of unique clonotypes in a given VJ combination).

As a simplest method, which does not use Pgen, one could simply select all clones with d(σ)/n
above a certain threshold. We performed this analysis for the YF-vaccination dataset (see S1

Data). For each donor we picked a threshold d(σ)/n that selects the same amount of clones on
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day 15 in each donor as we identify with the ALICE approach, and the same threshold is used

for the day 0 time point. For brevity, we call clones with d(σ)/n larger than the threshold d-hits.

The number of d-hits is larger after vaccination than before (with the exception of Q1 donor).

On day 0, there are 2 to 6 times more d-hits than ALICE hits (e.g., for donor P2, 478 d-hits

versus 81 ALICE hits). On day 15, much (1.5–40 times) fewer d-hits are similar to known YF

clones than ALICE hits. Notably, for one twin pair, P1 and P2, almost all d-hits are unrelated

to the YF vaccination (e.g., for P2, there are 7 YF-like d-hits out of 775 on day 15 versus 274

YF-like ALICE hits). To summarize, the number of neighbors alone is not enough to identify

interesting and potentially responding clonotypes, but the ALICE approach substantially

improves on this, both decreasing the number of false positives (number of hits pre vaccina-

tion) and increasing the true positive rate (fraction of YF-like hits post vaccination).

Including abundance information

The basic pipeline only takes the occurrence of nucleotide sequences in the sample into

account, and not their abundance (read count). To include that information, we replace in the

pipeline the number of similar sequences, d, by a sum of transformed abundances over these

sequences, s ¼
Pd

i¼1
f ðciÞ, where ci is the abundance of the ith nucleotide variant with similar

amino acid sequence. There exist several choices for the transformation f. f(c) = 1 − δc,0 gives

back the basic method, s = d. f(c) = c corresponds to summing the abundances of all similar

variants, whereas f(c) = log(c) corresponds to summing their logarithms. To define the null

model, we assume that the abundance of each sequence is sampled at random from the distri-

bution of empirical frequencies. Because this distribution followed a power law, we worked on

the logarithmic scale, and we picked f(c) = log(c). To calculate P(s|σ), under null hypothesis, we

use the identity P(s|σ) = Sd P(s|d)P(d|σ), where P(d|σ) was computed as described in the basic

pipeline (Eq 1). Then, P(s|d) is obtained as a d-fold convolution of Pf(f), the probability distri-

bution of the transformed abundances f (ci). For instance, P(s|d = 1) = Pf(f), P(s|d = 2) = SfPf(f)
Pf(s − f) = (Pf � Pf) (s), etc., so that PðsjdÞ ¼ Pð�Þf ðsÞ. These quantities do not depend on σ and

are computed just once at the beginning of the procedure from the clonotype abundance dis-

tribution. Applying this advanced version of ALICE to the YF data of Fig 2a [10] yielded very

similar results (S3 Fig) as the basic method. Although it is slower to implement, the advanced

method could still be useful because it is expected to be robust to wide ranges of repertoire

sampling depths, while the basic version implicitly relies on many sequences not being cap-

tured by the sample.

Statistics

To compare the normalized number of ALICE hits and maximum frequency of productive

rearrangement between memory and naive repertoires (Fig 1b), we used Wilcoxon rank-sum

two-tailed test (N = 52 naive subsets and N = 60 memory repertoires, p = 2.3 × 10−14 for maxi-

mum frequency of productive rearrangement, and p = 1.7 × 10−14 for normalized number of

ALICE hits). To compare the normalized number of ALICE hits in repertoires before and after

MLR (Fig 1c), we used Wilcoxon rank-sum two-tailed test (N = 12 pre-MLR PBMC samples,

N = 12 MLR cultures, p = 7.4 × 10−7). To compare number of ALICE hits with other statistics

between pre- and post-treatment time points for immunotherapy patients, we used Wilcoxon

signed-rank two-tailed test: In Fig 2c (N = 21 before and N = 21 after therapy), the total num-

ber of clonotypes gave p = 0.0005, Shannon entropy gave p = 0.042, and normalized ALICE

hits gave p = 0.0016. In S4 Fig (N = 40 before and N = 40 after first dose of therapy), the total
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number of clonotypes gave p = 0.6, Shannon entropy gave p = 0.6, and normalized ALICE hits

gave p = 0.0003.

Estimating enrichment in certain amino acid position of the TCR motif

To estimate the enrichment of amino acids at specific positions in the set of expanded TCR,

we used a position weight matrix model of TCR selection [24]. The sequence enrichment ratio

takes a factorized form over amino acid positions, parametrized by selection coefficient si(σi),
where σi denotes the amino acid of sequence σ at position i. The predicted frequency in the

expanded set is then

Psel sð Þ ¼
1

Z
Pgen sð Þe

PL

1
siðsiÞ ð2Þ

where Z a normalization factor.

The si parameters were learned by gradient ascent of the likelihood function, to which an

L2 regularization term, −λ || s ||2, was added. Specifically, selection coefficients are updated

according to si(σi) si(σi) + ε[Pdata(σi) − Psel(σi) − 2λsi(σi)], where Psel(σi) is the predicted

frequency of given amino acid at position i and Pdata(σi) is its observed frequency in the data.

After each update, all si(σi) are shifted by a common additive constant to satisfy following nor-

malization constraint:
P

aPgenðsiÞesiðsiÞ ¼ 1.

We applied this inference procedure on the 26 sequences forming the central cluster of

sequences from AS patients in Fig 2d. ε was set to 0.5, and λ was set to 0.02. The algorithm was

initialized with si(σi) = 0. The iterative procedure was repeated until the sum of the squared

update difference was lower than 10−6. The bottom logo of Fig 2e shows values of si(σi)
weighted by amino acid frequencies, so that the height of each letter is Pdata(σi)si(σi).

Supporting information

S1 Fig. ROC curves for classification of memory and naive repertoires using ALICE hits

and maximum productive rearrangement frequency as suggested in the paper by Thome

and colleagues [16]. The classifier based on ALICE hits has a much higher true positive rate

for low (up to 20%) false positive levels, but it could not distinguish naive and memory sub-

populations both having 0 hits. To break these ties, we ranked memory and naive subsets with

0 ALICE hits by the maximum frequency of productive rearrangements (combined classifier,

purple curve). The AUROCs for these classifiers are 0.89 (ALICE hits-based), 0.92 (maximum

productive frequency-based), and 0.95 (combined classifier). ALICE, Antigen-specific Lym-

phocyte Identification by Clustering of Expanded sequences; AUROC, area under the ROC

curve; ROC, receiver operating characteristic.

(TIFF)

S2 Fig. Cumulative fraction of repertoire occupied by immune response signatures of

donor Q1. One of the limitations of ALICE is inability to distinguish clonotypes specific for

multiple conditions happening simultaneously, for instance, between a response to vaccination

and a mild viral infection. Neither the signatures identified on day 0 (blue curve) nor the signa-

tures identified on day 15 (red curve) are able to recapitulate the dynamics of the YF vaccine

response. However, the subset of day 15 signatures that are absent on day 0 (purple curve)

shows a clear YF-specific response with a peak on day 15. The 122 clonotypes found as signifi-

cant on both day 0 and day 15 are not similar (defined as 1 amino acid mismatch) to any of the

responding clonotypes identified by temporal differences [10], further suggesting that they

are not YF-specific but instead correspond to another immune response that is already
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contracting at day 0. ALICE, Antigen-specific Lymphocyte Identification by Clustering of

Expanded sequences; YF, yellow fever.

(TIFF)

S3 Fig. Number of ALICE hits identified on day 0 and day 15 after YF vaccination using

abundance information. The results of this analysis are almost identical to the results of Fig

2a, with many more signatures identified after immunization than before (with the exception

of donor Q1) and a large fraction of ALICE hits identified on day 15 having similar sequences

to previously identified YF-specific clonotypes from Pogorelyy and colleagues [10]. ALICE,

Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences; YF, yellow

fever.

(TIFF)

S4 Fig. Number of immune response signatures for data from Subudhi and colleagues

[21]. (a) The number of ALICE hits is significantly higher after immunotherapy than before.

(b) Scatterplot of the normalized number of ALICE hits before and after therapy in each

patient; most points are concentrated above the equality line, showing an increase in the num-

ber of hits after therapy in most patients. ALICE, Antigen-specific Lymphocyte Identification

by Clustering of Expanded sequences.

(TIFF)

S5 Fig. Number of ALICE hits identified on day 0 and day 15 after YF vaccination using

separate selection coefficients for different CDR3 lengths. The results of this analysis are

almost identical to the results of Fig 2a, with many more signatures identified after immuniza-

tion than before (with the exception of donor Q1) and a large fraction of ALICE hits identified

on day 15 having similar sequences to previously identified YF-specific clonotypes from

Pogorelyy and colleagues [10]. Antigen-specific Lymphocyte Identification by Clustering of

Expanded sequences; CDR3, Complementarity Determining Region 3; YF, yellow fever.

(TIFF)

S6 Fig. Number of d-hits (clonotypes with normalized number of neighbors exceeding

threshold) identified on day 0 and day 15 after YF vaccination. For each donor we set a

threshold on normalized number of neighbors for each clone d/n, so the selected number of

clonotypes on day 15 is the same as identified by ALICE, see Fig 2a. Here, we plot the absolute

number of clones exceeding this threshold (d-hits). Notably, on day 0 the number of d-hits is

larger than the number of ALICE hits. On the other hand, the fraction of YF-related d-hits is

lower (reaching almost 0 for donors P1–P2) on day 15 than the same fraction for ALICE hits.

ALICE, Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences; YF,

yellow fever.

(TIFF)

S1 Data. Individual numerical values for the main and supporting information figures.

(XLSX)
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