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LABEX Corail, Nouméa, New Caledonia, 6 Université de la Nouvelle-Calédonie, BPR4, Noumea, New
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Abstract

Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required

to travel further afield for fishing opportunities. Technological advancements and fishery

subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes,

and other predators. Wilderness refuges, defined here as areas beyond the detectable

range of human influence, are therefore increasingly rare. In order to achieve marine

resources sustainability, large no-take marine protected areas (MPAs) with pelagic compo-

nents are being implemented. However, such conservation efforts require knowledge of the

critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill

this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to sur-

vey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-

mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key

predator community attributes: vertebrate species richness, mean maximum body size, and

shark abundance as a function of geomorphology, environmental conditions, and human

pressures. All attributes were primarily driven by geomorphology (35%−62% variance

explained) and environmental conditions (14%−49%). While human pressures had no influ-

ence on species richness, both body size and shark abundance responded strongly to dis-

tance to human markets (12%−20%). Refuges were identified at more than 1,250 km from

human markets for body size and for shark abundance. These refuges were identified as

remote and shallow seabed features, such as seamounts, submerged banks, and reefs.

Worryingly, hotpots of large individuals and of shark abundance are presently under-
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represented within no-take MPAs that aim to effectively protect marine predators, such as

the British Indian Ocean Territory. Population recovery of predators is unlikely to occur with-

out strategic placement and effective enforcement of large no-take MPAs in both coastal

and remote locations.

Introduction

Industrial fishing pressures and catches have increased globally since the 1950s [1], starting a

race to track down unfished populations that yield high economic return [2]. As a conse-

quence, most coastal regions have experienced ecological defaunation [3], with only 13.2% of

the world’s ocean now considered as wilderness refuges [4]. We define refuges as areas beyond

the detectable range of local human pressures. These areas host the last ecosystems where large

marine predators remain abundant [5,6]. Marine predators can be defined broadly as animals

that actively prey on other individuals, including top predators at the apex of the food web,

such as billfish and sharks, which have few natural enemies as adults [7]. Predators generally

play unique and irreplaceable functional roles, including controlling trophic cascades, remov-

ing weak or diseased individuals, and translocating nutrients between habitats [8]. Sharks, in

particular, are considered critical for ecosystem functioning [9]. Only large (>1,000 km2) and

no-take marine protected areas (MPAs) have the potential to counteract predator defaunation

[6,10]. However, prioritization is complicated by a lack of standardized information about the

locations of critical habitats and refuges from humans in a dynamic and increasingly impacted

ocean [11,12]. A primary criticism of current large no-take MPA and modern MPA network

placement is that they are implemented primarily because of political ease [13] and are residual

[14] and thereby fail to adequately capture high-quality habitats.

Understanding marine predator biogeography is limited by biases in data acquisition. Tra-

ditionally, information on predator diversity and abundance has been derived from fisheries’

catches [15]. However, these data provide uncertain estimates of predator abundances because

fishing efforts focus on areas that generate the greatest economic return. Consequently, we

have little information from non- or lightly fished areas [11]. Moreover, predator hotspots are

typically identified by overlapping occurrence maps of individual species, which stem in part

from biased fishery-dependent data [16,17]. Thus, the distribution of the diversity, size, and

abundance of predators remains poorly known and understood. The tagging of predators

using biotelemetry devices is becoming increasingly common in studies of individual habitat

preferences, movements, and migrations [18]. Despite crucial advances in the field of move-

ment ecology, the deployment of tracking devices on animals has some limitations. First, this

technique relies on the catch of a high number of individuals from various species [19], which

is costly, time consuming, and thus rarely achieved (but see [19,20]). In the absence of multi-

species tracking, the diversity and abundance of vertebrates in a given area is therefore poorly

understood [18]. Secondly, tracking devices can impact the wellbeing of equipped animals,

raising some ethical concerns [21].

Here, we utilize an extensive data set of standardized and nondestructive baited video sur-

veys from nine regions across the Indo-Pacific region to model predator diversity and abun-

dance and to identify hotpots of vertebrate species richness, mean maximum body size

weighted by abundance (hereafter “body size”), and shark abundance as a function of environ-

mental conditions, geomorphology, human pressure, and management levels. This first large-

scale baited videography survey of marine predators across a vast gradient of conditions

The last refuges for marine predators

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000366 August 6, 2019 2 / 20

Government Pristine reef and Apex grants (LV),

and National Geographic’s Pristine Seas

programme (AF, ES). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: BIOT, British Indian Ocean

Territory; BRT, boosted regression tree; BRUVS,

baited remote underwater video system; EEZ,

Exclusive Economic Zone; IUU, illegal, unreported,

and unregulated fishery; MPA, marine protected

area; SST, sea surface temperature.

https://doi.org/10.1371/journal.pbio.3000366


provides evidence for the spatially explicit impact of human pressures in the marine realm.

Our model outputs permit to assess current protection levels in predator hotspots and reveal

the locations of the few remaining predator refuges that urgently need conservation effort.

Results and discussion

The baited remote underwater video system (BRUVS) survey spanned strong gradients of

environmental conditions, geomorphology, and human pressure from near regional capitals

to remote areas ca. 1,500 km from human markets across a range of seabed depths (6–3,638

m). Based on 1,041 baited video deployments (Fig 1A), we identified 23,200 vertebrate individ-

uals (S1 Table, Fig 2) representing 109 species, including 85 teleost fish species (22,334 individ-

uals), 19 shark species (841 individuals), three reptile species (23 individuals), two marine

mammal species (two individuals), and two ray species (five individuals). The majority of fish

and shark species were reef associated (70 spp.), followed by pelagic-oceanic and pelagic-

neritic (29 spp.), and bentho-pelagic (5 spp.) species. Depths of occurrence (maximum

reported for each species) ranged from 13 to 4,000 m (mean ± SD: 270 ± 469 m, S1 Table). Fre-

quency distributions of vertebrate species richness (mean ± SD: 2.6 ± 1.91, range: 0−15), body

size (mean ± SD: 93.86 ± 86.94, range: 0−500 cm), and shark abundance (mean ± SD:

0.83 ± 2.76, range: 0−38) were all right skewed (Fig 1B–1D), with 13.1% of the BRUVS deploy-

ment recording no individual, suggesting that marine predators are patchily distributed.

Boosted regression tree [22] (BRT) (S2 Table) models estimated the relative influence of

three types of potential drivers: environmental conditions, geomorphology, and human pres-

sures (Methods). BRT models explained 89%, 64%, and 93% of the variance (cross-validation

procedure) in vertebrate species richness, body size, and shark abundance, respectively. Few

deployments detected more than three species (27%), or a maximum body size greater than

one meter (34%). Sharks were detected only on 12% of the deployments, and these were more

probable outside a 1,250-km radius from human markets, suggesting that their key ecological

functions [9] are likely to have been eroded at closer distances. In the absence of large no-take

MPAs in proximity to human markets, we are unable to fully disentangle the effects of remote-

ness and protection.

Species richness

Vertebrate species richness was primarily related to geomorphology, including distance to the

coast (relative contribution of 22%, ranked first, Fig 3A and Fig 3B), seabed depth (18%,

third), and distance to the nearest seamount (10%, sixth). High species richness values over

shallow seabeds reflect the transition from reef to pelagic habitats, the former supporting more

species [17] (S1 Table). Inshore waters and seamounts are also species rich compared to the

open ocean [17,23] due to trophic subsidies [24] that are often the result of upwelling [25] and

greater prey availability in these areas. We observed a threshold in the rate of richness decline

at 220 km from coasts (Fig 3B), suggesting that the range of influence of bathymetry on oce-

anic systems may extend further than previously measured (30−100 km from the coast)

[24,26]. This has particular implications for our understanding of wildlife biogeography in the

Western Pacific, where the existence of numerous stepping-stone islands can serve to enrich

and seed habitats far from any continental coast [27], driving both predator distribution and

migration patterns [28]. Distance to the Coral Triangle was also a key driver of species richness

(20%, second, Fig 3C), suggesting the importance of evolutionary origins and historical effects

already observed for corals and reef fishes [29]. Species richness was partly explained by sea

surface temperature (SST, 17%, fourth), which is considered as a proxy for the latitudinal bio-

diversity gradient (12). The relationship between species richness and SST peaked in tropical
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Fig 1. Indo-Pacific sampling efforts and frequency distribution of predator attributes. (A) Map of deployments (n = 1,041) with protection level and numbers of

deployments per region, unprotected (outlined in blue), partially protected or small no-take MPAs (outlined and filled in pink), and large no-take MPAs (>1,000
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regions (>28˚C), with a secondary peak observed in subtropical regions (22−24˚C), consistent

with patterns observed for other coastal and pelagic taxonomic groups [17]. Hotspots of spe-

cies richness (top 5%,>3.8 species) were widely distributed inside the Coral Triangle but

mainly in Indonesia (Fig 3A), concentrated near eastern Borneo and north of Papua (0˚ N,

118–145˚ E), and around the Solomon Islands (9˚ S, 155˚ E; Fig 3D).

Body size

Variation in body size was primarily explained by depth (45%, first), distance to the nearest

seamount (16%, second), SST (14%, third), and human pressure (23%, for the two pressures

combined, fourth and fifth; Fig 4A). The strong negative correlation between body size and

SST (Fig 4B), with a marked drop at more than 28˚C, is consistent with biogeography patterns

commonly observed in marine fishes [27] and marine mammals [30], where the tropics, and

particularly the central Indo-Pacific, are known to host many small-bodied species [31]. Body

size increased abruptly at more than 1,250 km from markets (Fig 4C). This threshold is greater

km2, outlined and filled in green). (B) Frequency distributions of vertebrate species richness, (C) mean maximum body size (cm), and (D) shark abundance (sum of

MaxN) across all deployments. The numerical values for B, C, and D can be found in S1 Data. (E) Shark abundance (log[SumMaxN + 1]) in each region (same color

scale as for A). (F) Key to EEZs within the Indo-Pacific. EEZ from https://rosselkhoznadzor.carto.com/tables/world_maritime_boundaries_v8. Some EEZs are

contested. 1, BIOT (UK); 2, Maldives; 3, Sri Lanka; 4, Cocos (Keeling) Island (Aus); 5, Malaysia; 6, Christmas Island (Aus); 7, Indonesia; 8, Australia; 9, Palau; 10,

Papua New Guinea; 11, Micronesia; 12, Solomon Island; 13, Nauru; 14, New Caledonia (Fr); 15, Vanuatu; 16, Norfolk Island (Aus); 17, Marshall Islands; 18, Kiribati;

19, Fiji; 20, Tuvalu; 21, Kermadec Island (NZ); 22, Wallis and Futuna (Fr); 23, Samoa; 24, Tonga; 25, Howland and Baker Island (US); 26, Tokelau (NZ); 27, Phoenix

Island Group; 28, Niue (NZ); 29, American Samoa (US); 30, Palmyra Atoll (US); 31, Cook Island (NZ); 32, Jarvis Island (US); 33, Line Island Group (US); 34, French

Polynesia (Fr); 35, Pitcairn (UK). EEZ, Exclusive Economic Zones; MPA, marine protected area.

https://doi.org/10.1371/journal.pbio.3000366.g001

Fig 2. Examples of midwater predators surveyed by the BRUVS. (A) Blue shark (Prionace glauca). (B) Rainbow runner (Elagatis bipinnulata). (C) Mahi-mahi

(Coryphaena hippurus). (D) Black marlin (Istiompax indica). BRUVS, baited remote underwater video system.

https://doi.org/10.1371/journal.pbio.3000366.g002
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than previously shown to shelter high-fish biomass [32] (14−200 km) and is likely affected by

the increasing distant water capacity and reach of human pressures [2]. Distance to the Coral

Triangle and chlorophyll-a concentration were of marginal importance (<10%). Many hot-

spots of large individuals (top 5% >108 cm) were located in coastal regions with shallow

shelves, such as northern Australia (18˚ S, 120−140˚ E), western Australia (28˚ S, 115˚ E), the

Great Barrier Reef (20˚ S, 150˚ E), the Arafura Sea (9.3˚ S, 135˚ E), and the Javan Sea (5˚ S,

105˚ E, Fig 4D).

Shark abundance

Proximity to market was the primary driver of shark abundance, explaining 20% of the vari-

ability (first; Fig 5A). The minimum distance from human markets that preserves shark abun-

dance (1,250 km; Fig 5B) was equal to that which preserves large bodied individuals (1,250 km;

Fig 4C), which demonstrates that body size and shark abundance are similarly sensitive to

human exploitation. This is consistent with expectations since sharks are large individuals,

meaning that body size and shark abundance are, therefore, to a certain degree related. How-

ever, this further suggests that the removal of sharks is unlikely to be functionally compensated

by other large-bodied predators, as large-bodied individuals are likely to be similarly affected,

with severe consequences on ecosystem functioning [9,33]. Areas beyond market influence

were located near remote reefs and seamounts, in Rapa Iti in the Austral Islands (28˚ S, 142˚

W) and in the British Indian Ocean Territory (BIOT) no-take MPA (6˚ S, 72˚ E; Fig 5D).

Shark abundances increased with shallower depth (13%, third; Fig 5A and Fig 5B) proxim-

ity to seamounts (12%, fourth), chlorophyll-a concentration (14%, second), and proximity to

the Coral Triangle (12%, fifth). The latter two drivers were indicative of shark presence, in

Fig 3. Drivers and patterns of vertebrate species richness in the Indo-Pacific. (A) Relative contribution of main drivers explaining variations in species richness were

generated from 100 iterations of BRTs. (B, C) Partial dependence plot (lines), observed values (dots), and 95% confidence intervals for distance to the coast (B) and SST.

(D) Predictions of species richness (top 5% values,>3.8, in red). The numerical values for (A) can be found in S2 Data. BRT, boosted regression tree; dist coast, distance

to nearest coast; dist CoralTri, distance to the Coral Triangle; dist seamount, distance to nearest seamount with summit depth<1,500 m; SST, sea surface temperature.

https://doi.org/10.1371/journal.pbio.3000366.g003
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both coastal and pelagic systems, respectively. The Coral Triangle harbors the greatest density

of coral reefs that support reef sharks, and productive regions are known to favorably attract

predators [34]. Since a considerable portion of the variability in shark abundance was

explained by geomorphology and environmental drivers (ca. 80%), our survey and predictions

sometimes reported elevated shark abundance and hotspots in shallow areas close to human

markets, such as in Palau (Fig 1E), Borneo (6˚ S, 110–117˚ E), northern Australia (18˚ S, 120

−140˚ E), and western Papua (6˚ S, 130˚ E, Fig 5D). Although Palau is afforded some protec-

tion as a shark sanctuary, fishing mortality remains an issue there [35] and in other sanctuaries

[36].

Refuges and protection levels

Industrial fishing efforts [37] were not prognostic of body size and shark distribution. We have

identified locations of refuges that therefore differ in part from those in a recent study [4]. In

this study, ecosystem-level refuges were identified on the basis of cumulative human pressures

[38], including industrial fishing efforts [37] notably. In contrast to this approach, we find that

the near ubiquitous prevalence of human markets along coastlines means that continental

shelf refuges, such as in the Gulf of Carpentaria or along the southern coast of Papua [4], are

unlikely to occur. Consistently with the previous study [4], we find probable refuges in the Pit-

cairn Islands and in the Marquesas Island.

We did not detect any positive influence of protection on any predator attribute. The

deployment sites with the highest protection level (no-take and>1,000 km2) were all located

inside the British Indian Ocean Territory (BIOT) MPA. Although the BIOT MPA is both

Fig 4. Drivers and patterns of mean max body size in the Indo-Pacific. (A) Relative contributions of the main drivers explaining variation in body size were generated

from 100 iterations of BRTs. (B,C) Partial dependence plot (lines), observed values (dots), and 95% confidence intervals for SST (B) and distance to nearest market

(thresholds represented by breaking point [C]). (D) Prediction values of body size (top 5% values,>108 cm, in red). The numerical values for (A) can be found in S2

Data. BRT, boosted regression tree; Dist market, distance to nearest market; Dist pop, distance to nearest population; Dist seamount, distance to nearest seamount with

summit depth of<1,500 m; SST, sea surface temperature.

https://doi.org/10.1371/journal.pbio.3000366.g004
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sufficiently remote and large (>1,250 km from human markets and 640,000 km2, respectively)

to afford protection to mobile sharks [39,40] and tuna [41], this MPA lacks, at present, several

of the key criteria previously identified as necessary for effective protection of predators [6].

Notably, BIOT does not classify as old (2 and 5 years old at the two times of sampling), and

pressure from illegal, unreported, and unregulated fisheries (IUU) remains high. The com-

bined effect of historical fisheries predating the MPA and ongoing IUU pressures are believed

to have caused 21% and 93% declines in gray reef and silvertips sharks, respectively [42]. Since

we did not observe shark abundance levels in BIOT higher than those in other areas remote

from human markets (Fig 1E), such as in Rapa Iti, the BIOT MPA is certainly not sufficiently

enforced to yield detectable increases in shark abundances. Small (<1,000 km2) no-take MPAs

that were sampled, such as the Merlet MPA (New Caledonia), are likely too small and too

proximate to human markets to effectively protect sharks, consistent with previous results [5].

Protection may yet, in the future, enhance predator levels in BIOT (and in other large no-

take MPAs), given adequate enforcement and sufficient time to enable population recovery

[43]. Under these conditions, is protection coverage, as it currently stands, representative of

the overall Indo-Pacific? We compared predicted values of predator attributes within partially

protected MPAs or small no-take MPAs and within large (>1,000 km2) no-take MPAs, with

values across the unprotected Indo-Pacific (Methods, Fig 6). Median values of vertebrate spe-

cies richness within partially protected and small no-take MPAs and within large no-take

MPAs were 66% and 90% of values in the unprotected Indo-Pacific, respectively (Fig 6A).

Body size within partially protected MPAs or small no-take MPAs and within large no-take

MPAs were 120% and 6% of unprotected Indo-Pacific median values (Fig 6B). Shark

Fig 5. Drivers and patterns of shark abundance in the Indo-Pacific. (A) Relative contributions of drivers explaining variations in shark abundance (log[sumMaxN
+ 1]) were generated from 100 iterations of BRTs. (B,C) Partial dependence plot (lines), observed values (dots), and 95% confidence intervals for distance to nearest

market (B) and seabed depth (C) and thresholds represented by breaking point (C). (D) Predicted values of shark abundance and hotspots (top 5% values,>0.54, in

red). The numerical values for (A) can be found in S2 Data. BRT, boosted regression tree; Chla, chlorophyll-a concentration; Dist coast, distance to nearest coast; Dist

CoralTri, distance to the Coral Triangle; Dist market, distance to nearest market; Dist seamount, distance to nearest seamount with a summit depth of<1,500 m; SST,

sea surface temperature.

https://doi.org/10.1371/journal.pbio.3000366.g005
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abundances within small MPAs and large no-take MPAs values were 106% and 44%, respec-

tively, of unprotected Indo-Pacific median values (Fig 6C). At present, deep habitat is over-

represented within large no-take MPAs (Fig 7). Although some habitats within large no-take

Fig 6. Frequency distributions of predator attribute values predicted to occur under different spatial management regimes in the Indo-Pacific. (A) Vertebrate

species richness, (B) body size, and (C) shark abundance (log[sumMaxN + 1]) across the entire unprotected Indo-Pacific, inside partially protected or small MPAs and

inside large no-take MPAs (>1,000 km2). Vertical lines and values are associated medians. MPA, marine protected area.

https://doi.org/10.1371/journal.pbio.3000366.g006
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MPAs are remote and are therefore refuges, they do not host enough hotspots of large individ-

uals and sharks. Median values within large no-take MPAs are therefore low. Based on our

evaluation, the predator attributes most sensitive to human pressures are therefore the least

represented within large no-take MPAs. We found that many hotspots are currently left

unprotected, notably shallow reefs that are not remote from human markets (Fig 7). The only

MPA that included large individual and shark hotspots that were also refuges (by virtue of

being remote from human markets) was the BIOT MPA (640,000 km2).

Concluding remarks

Our analysis has two implications. Firstly, remote (>1,250 km from markets) and shallow fea-

tures (<500 m depth) are two parsimonious but accurate identifiers of predator refuges. Sec-

ondly, as we approach the Aichi Biodiversity target’s end date [44], there are considerable

shortcomings in the current placement of MPAs. There remain numerous shallow hotspots in

the vicinity of human markets that are not appropriately protected. These hotspots persist in

the face of human pressures and are not refuges. In addition, increasing human pressure will

further deplete hotspots that are in proximity to markets, whist expanding the threshold influ-

ence of human markets to greater than 1,250 km. Large no-take MPAs need to be better

Fig 7. Predicted shark abundance and occurrence along a gradient of human pressures (Distance to Market) and habitat suitability (Depth). Values are segregated

according to protection levels and whether they are hotspots (>.95 quantiles) or not (NA).

https://doi.org/10.1371/journal.pbio.3000366.g007
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enforced and extended, focusing on both hotspots and on refuges where predators remain

abundant. At the regional level of Australia, our results are consistent with a previous study,

demonstrating that existing protections are “residual” to commercial use, in that protection is

only offered in locations not presently threatened [14]. Moreover, the new Australian marine

park management plans (https://parksaustralia.gov.au/marine/management/plans/) largely fail

to address this residual nature. Human markets along the coastlines preclude the existence of

refuges in their proximity; however, there remain considerable coastal hotspots of high conser-

vation value, notably along the Australian, Bornean, Papuan, and Javan coasts. In order to gen-

erate representative coverage in the Indo-Pacific, large no-take MPAs should be implemented

both on shallow seabeds and, in order to encompass refuges, in remote locations, such as iden-

tified areas of French Polynesia. Historical legacies and socioeconomic variables all need to

factor in during MPA implementation [45]. However, while the means by which hotspots and

refuges are protected is a matter for governments and stakeholders, there is a significant body

of research that suggests partial protection does not generate clear conservation benefits for

predators [6] and can be more costly [10,46]. Our recommendations of large no-take MPAs

reflect that evidence [47]. By modeling the specific impact of human pressures on predator

attributes, rather than assuming a direct causal link at the ecosystem level, future studies

should aim to identify predator refuges that may persist and overperform in spite of extractive

pressures (i.e., reef “bright spots” [48]). We propose that identifying these in the pelagic realm,

specifically outside national jurisdictions in the high sea, should be a research priority.

Methods

Field survey

Marine predators were surveyed using standardized midwater stereo-BRUVS [49–51] (S1 Fig)

across nine regions in the Indo-Pacific (n = 1,041; Fig 1A and Fig 1F). The field survey was

undertaken under ethics approval and permit RA/3/100/1166 from the Animal Ethics Com-

mittee of the University of Western Australia, following guidelines under the Animal Welfare

Act 2002 (WA) and the Australian Code for the Care and Use of Animals for Scientific Pur-

poses. The data collected involved passive observation of animals using baited video systems,

and no animals were manipulated directly. BRUVS were typically deployed as longlines of five

rigs, where each rig was suspended at 10 m, 200 m from its nearest neighbor and within 300

km of the nearest coastline. The entire line was left to drift freely for 2 hours. The rigs are

made up of a vertical pole and a horizontal crossbar that supported two GoPro underwater

action cameras [52]. The two cameras converged with an inward angle of 8 degrees on a bait

canister, suspended at ca. 1.5 m from the cameras at the end of an adjustable arm. The bait

canister contained 1 kg of crushed sardines (Sardinops spp.). The recorded video footage

allows taxonomic identification of individuals and estimates of relative abundances as the

maximum number of individuals of a given species in a single frame (MaxN) [53]. As with any

sampling methodology, BRUVS are unlikely to fully capture the species pool [54]. However,

BRUVS have been widely used to generate reliable and consistent estimates of richness, size,

and abundance. Moreover, despite interspecific differences in bait response and animal mobil-

ity, and variation in bait plumes [55], BRUVS remains one of the most reliable ways of stan-

dardized sampling of large predators, such as sharks, for testing spatial and temporal variation.

The BRUVS sampled both the midwater assemblages over a range of seabed depths and condi-

tions, including near coastal habitats (<100 m depth, <50 m from the coast; n = 201), raised

banks and shallow shoals remote from the coast (<300 m depth,>10 km, n = 199), deep and

shallow seamounts (summit 1,100 m and 70 m depth, respectively; n = 156), and abyssal plains

(>2,000 m depth, n = 80).
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Each BRUVS was considered an individual deployment and analyzed as a single site,

although the BRUVS on the line were probably not independent from each other. Our survey

effort corresponded to an east to west (72˚ E−134.5˚ W) and north to south (7.6˚ N − 33˚ S)

transect, straddling the Coral Triangle (Fig 1A), and spanned a range of human pressures [56].

All sampling was conducted between the 17th of April 2012 and the 25th of January 2015, dur-

ing daylight hours, between 09:30 and 17:00 local time.

Predator community attributes

We modeled the spatial variation in three attributes for each individual BRUVS, which reflects

different aspects of the predator community as recorded on video (S2 Fig). Vertebrate species

richness (Fig 1B) was recorded as the total number of vertebrate species observed per 2-hour

deployment. We calculated mean maximum body size for each deployment, weighting for

abundance [57] (hereafter simply “body size,” Lmax in cm; Fig 1C). This attribute is com-

monly used for assessing the state of coral reefs, as an indicator of the overall fish and shark

community [57,58], and the degree to which the trophic pyramid is dominated by large indi-

viduals and species. Ecosystems with abundant and large individuals tend to exert greater top-

down control and require high nutrient input [8]. In addition, body size is a highly sensitive

indicator of fishing pressure [59], as larger individuals and species are preferentially targeted

and removed. Body size for each deployment was computed using the following relationship:

Lmax ¼
Pn

i Lmaxi �MaxNiPn
i MaxNi

;

in which Lmaxi is the maximum length recorded for species i according to FishBase [60] or in

the literature, and MaxNi is the MaxN abundance, the maximum amount of individual

observed during the 2-hour recording for species i, and n is number of species. Finally, we esti-

mated the total relative abundance of sharks, across all species. While the ecological roles of

reef sharks as apex predators remain a topic of debate [9], sharks are particularly vulnerable to

exploitation and emblematic symbols of conservation [16,61]. Moreover, they are recognized

as important indicators of marine health, potentially controlling lower trophic levels [9,62,63]

through trophic cascades in both reef [64] and pelagic systems [65]. Shark abundance was cal-

culated as the sum of MaxN across all shark species for each deployment (Fig 1D) and modeled

as log[sumMaxN + 1].

Drivers of predator diversity and abundance

We examined relationships between the predator attributes and spatial drivers classified

broadly under three categories: environment, geomorphology, and human pressures. Hypoth-

esized environmental drivers extracted for each deployment were i) median SST (22−29.19˚C,

NOAA’s Multiscale Ultra-high Resolution [MUR] SST http://coastwatch.pfeg.noaa.gov/

erddap/wms/jplMURSST/index.html), a proxy for latitudinal patterns in species diversity uni-

versally observed across taxa [17]; ii) SST standard deviation (0.53−2.36˚C), an indicator of

frontal dynamics generating nutrient mixing and multilevel productivity [34,66]; iii) median

chlorophyll-a concentration (0.03−1.15 mg m−3, 8-day AQUA MODIS http://coastwatch.pfeg.

noaa.gov/erddap/wms/erdMHchla8day/index.html), an indicator of primary productivity and

available trophic energy [25]; and iv) distance to the center of the Coral Triangle (211−6,667

km), the epicenter of fish diversity [67]. Geomorphological drivers were i) seabed depth

(6−3,638 m), a dimension that fundamentally structures and constrains marine habitats verti-

cally [68]; ii) distance to the nearest coast (0−326 km), a measure of terrestrial energy availabil-

ity [24] and a physical barrier restricting the horizontal extent of the marine habitat [69]; and
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iii) distance to the nearest seamount [70] (summit depth<1,500 m, 1.5−505 km), the presence

of which is known to attract predators [26].

For each deployment, we quantified human pressure using a range of metrics. Total industrial

fishing effort for all gear were estimated for each deployment (https://globalfishingwatch.org/).

We used published records of fishing hours [37]. In these records, fishing hours were estimated

from AIS vessel position fixes and algorithms that determine fishing behavior based on move-

ments. AIS records is limited to vessels greater than 15 m and can be unreliable, both in terms of

people turning it on/off and falsifying records when they do not want to be monitored, as well as

in the frequency of transmissions. We extracted averaged values over 0.5˚ (hours fished, 0–0.8 hr

km−2), corresponding with the sampling period (2012–2016). We also computed the minimum

distance to the nearest human population using the LandScan 2016 database (0.1−829 km)[71],

and minimum distance to the nearest human density center (hereafter “market,” 11–1,450 km),

using the World Cities spatial layer (ESRI). This layer defines human density centers as provincial

capital cities, major population centers, landmark cities, national capitals, and shipping ports.

These two distance metrics are derived to indirectly capture the many cumulative effects which

humans have on ecosystem predators [32,72] including noise pollution [73], nonreported fishing

[1], vessel strikes [74], infrastructure development [72], and direct exploitation [75]. Moreover,

these metrics encompass some aspects of the historical impacts that have occurred before the

onset of modern record keeping [1,76]. We explored both distance to population and distance to

market because while small populations can have notable impacts on regional predators [77],

pressures scale substantially when supported by an industrialized market [78]. For each deploy-

ment, we also estimated the human population in a 50 km and 500 km buffer region (0−111,295

and 0−3,018,935 humans, respectively), and the human development index of the nearest country

(HDI, 0.61–0.93, http://hdr.undp.org/en/statistics/hdi/), which takes into account health and edu-

cation status. Finally, we tested the impact of management by taking advantage of the different

protection level implemented for each deployment (Fig 1A). Using MPA coverage from the

World Database of Protected Areas [79], we assigned each a protection category corresponding to

whether it was 1) unprotected and open to fisheries (n = 340), 2) inside a small no-take MPA

(IUCN class I–IV,<1,000 km2) or inside an MPA that allowed some extractive pressure (IUCN

class III–IV, n = 311), or 3) inside a large no-take MPA (IUCN class I and II,>1,000 km2,

n = 390). These three broad categories offer incrementally more effective and strict protection on

predators. Large no-take MPAs were assessed specifically since previous studies have documented

that they meet some of the unique conditions (both large and no-take) necessary for protecting

large species [6], choosing 1,000 km2 as a conservative threshold [80]. The protection categories

were unbalanced and did not vary independently with distance to human market or distance to

human populations. We note that the Commonwealth Marine Reserve network inside the Austra-

lian EEZ have recently undergone a review (2014−2015) of the reserves implemented in 2012

(https://www.environment.gov.au/marinereservesreview/about). These new changes have been

implemented and are locked in for the next 10 years.

We used BRTs [22] to estimate the relative strengths of the effects of environmental condi-

tions, geomorphology, and human pressures on the three predator attributes. BRTs can detect

nonlinear relationships between response variables and their drivers, e.g., SST and species

richness [17]. Further, BRTs are robust to codependencies amongst drivers, which are com-

mon in ecology. Codependencies can arise when the effect of a driver is conditional on another

driver meeting a certain value. For example, the net effect of seamounts on predators aggrega-

tion is highly conditional upon regional frontal features and eddies [81]. Finally, BRTs are con-

sidered reasonably robust to collinearity, arising from correlated drivers. For example, the

absence of human populations in the middle of the ocean renders distance to coast and dis-

tance to human population correlated in our data (r = 0.84).
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To select the best BRT model, we chose the optimal combination of tree complexity, learn-

ing rate, and bag fraction as the one minimizing the out-of-bag (OOB) estimates of error rate

[82]. The bag fraction term introduces stochasticity into the models and controls overfitting

[83]. Model features were chosen depending upon goodness-of-fit via a cross-validation (CV)

procedure. The contribution of each driver (%) was estimated as the proportion of times each

driver was selected to split the data among all the trees, weighted by the squared improvement

to the model as a result of each split, and averaged over all trees. Standard deviation around

the contribution of each driver was generated by a hundred random seed iterations of the

model selection computation. We retained drivers with more than 10% contributions to the

fully saturated model in order to generate simplified and parsimonious final model [22].

Model parameters for the best models are reported in S2 Table.

Due to complex interactions between bait diffusion rates, current speed, and fish attraction,

it is difficult to determine the sampling range of the individual BRUVS. Here, a separation of

200 m between each BRUVS on the same string was a trade-off between practicalities in the

field and maximizing the distance between each rig. This distance may be insufficient to guar-

antee independence [84]. In order to account for potential spatial autocorrelation, we intro-

duced a spatial autocovariate term [85], calculated from the residuals of our simplified BRTs.

The residual autocovariate was calculated by arranging the residuals of the simplified BRT

models on 0.001 degree grid (111 m) and applying a focal mean using a first-order neighbor-

hood [86]. This approach has been shown to significantly reduce the spatial autocorrelation in

the model residuals [87]. Model residuals of the final autologistic models were checked for spa-

tial autocovariation, using a Moran’s I test. For out-of-sample predictions, the autocovariate

was set at the median value. For purposes of reporting the percent contribution of each driver,

the percentage contribution was rescaled without the contribution of the autocovariate term.

All BRTs were built in R (R Development Core Team 2011 version R version 2.15.2) using

the gbm package version 1.6–3.1 and custom code available online (http://cran.r-project.org/

web/packages/gbm). To detect potential thresholds within the relationship between the three

attributes and spatial drivers, we tested for the presence of nonlinear relationships. When the

null hypothesis of no change of slope was disproven (Davies’s test) [88], we performed break-

ing point regressions [89] to identify the threshold values. BRT model predictions were ren-

dered on a 10-km by 10-km grid between 7˚ N and 32˚ S and between 30˚ E and 75˚ W for

each predator attribute, showing the world’s land masses and countries’ EEZs [90]. Out-of-

sample predictions were restricted to sites where conditions were similar to the conditions of

the deployment sites (S2 Fig). Potential hotspots were defined as the highest 5% of predicted

values.

Assessing predator protection levels

We evaluated whether current protection levels were representative in providing cover for the

hotspots of predator diversity and abundance. For each attribute, we determined the frequency

distribution of values predicted to occur inside each protection category. The attribute values

predicted under each protection levels were compared after rescaling the attribute values from

0 to 1 in order to allow for meaningful comparison between attributes.

Supporting information

S1 Fig. Schematic of free-drifting BRUVS [49–51]. (A) Stereo rig with individual compo-

nents. (B) Rig suspended in the midwater. BRUVS, baited remote underwater video system.

(TIF)
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S2 Fig. Values (mean and range) of explanatory drivers of predator distribution at the

deployment and prediction sites. (A–D) Environment drivers (in green). (E–G) Geomor-

phology drivers (in blue). (H,I) Human pressure drivers (in red). The numerical values for A–I

can be found in S3 Data.

(TIF)

S1 Table. Marine species and their maximum length, as recorded by midwater BRUVS

across the Indo-Pacific, ordered by family. BRUVS, baited remote underwater video system.

(XLSX)

S2 Table. BRT parameters used to fit the models on specific predator attributes. Spatial

autocorrelation as reported by Moran’s I for the three models, in the observations only, and in

the residuals of the BRT with autocovariate. An index of 1 indicates high positive autocorrela-

tion; 0 no autocorrelation; −1 high negative autocorrelation. BRT, boosted regression tree.

(XLSX)

S1 Data. Raw SR, body size (MaxL), and shark abundance (TaSharks) at each individual

BRUVS deployment, pertaining to Fig 1B–1E. BRUVS, baited remote underwater video sys-

tem; SR, species richness.

(XLSX)

S2 Data. Relative contribution of each BRT driver, pertaining to Fig 3A, Fig 4A, and Fig

5A. BRT, boosted regression tree.

(XLSX)

S3 Data. Raw values of explanatory drivers of predator distribution at the deployment and

prediction sites, pertaining to S2 Fig.

(XLSX)
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