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Abstract: In this note, we first show that the general Zagreb index can be obtained from the M−polynomial
of a graph by giving a suitable operator. Next, we obtain M−polynomial of some cactus chains. Furthermore,
we derive some degree based topological indices of cactus chains from their M−polynomial.
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1. Introduction

T he concept of degree is analogous to the concept of valence in organic chemistry with a limitation that
degree of any vertex in any chemical graph is at most 4. This gives graph theory a broad way to

chemistry. It is always interesting to find some properties of graphs or molecular graphs which are invariant.
Topological indices and polynomials are foremost among them. Over the last decade there are numerous
research papers devoted to topological indices and polynomials. Several topological indices have been defined
in the literature. For various topological indices one can refer to [1–8].

Let G = (V, E) be a simple, undirected graph. Let V(G) be the vertex set and E(G) be the edge set of the
graph G, respectively. The degree dG(v) of a vertex v ∈ V(G) is the number of edges incident to it in G. Let
{v1, v2, ..., vn} be the vertices of G and let di = dG(vi). A graph G is said to be r− regular if degree of each
vertex in G is r. A graph is called cycle if it is 2− regular. A cactus graph is a connected graph in which any
two simple cycles have at most one vertex in common. Every cycle of cactus graph is chordless and every
block of a cactus graph is either an edge or a cycle. If all blocks of a cactus graph are triangular then it is
called triangular cacti. If all the triangles of a triangular cactus graph has at most two cut-vertices and each
cut-vertex is shared by exactly two triangles then we say that triangular cactus graph is a chain triangular
cactus. In chain triangular cactus if we replace triangles by cycles of length 4 then we obtain cacti whose every
block is C4, such cacti are called square cacti. For ortho-chain square cactus the cut vertices are adjacent and a
para-chain square cactus their cut vertices are not adjacent. Recent study on some cactus chain can be found in
[9–11] and references cited therein. For undefined graph theoretic terminology used in this paper can be found
in [12].

The general form of degree-based topological index of a graph is given by

TI(G) = ∑
e=uv∈G

f (dG(u), dG(v))

where f = f (x, y) is a function appropriately chosen for the computation. Table 1 gives the standard
topological indices defined by f (x, y).

The M − polynomial [13] was introduced in 2015 by Deutch and Klavžar and is found useful in
determining many degree-based topological indices (listed in Table 1).
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Definition 1. [13] Let G be a graph. Then M− polynomial of G is defined as

M(G; x, y) = ∑
i≤j

mij(G)xiyj,

where mij, i, j ≥ 1, is the number of edges uv of G such that {dG(u), dG(v)} = {i, j} [14].

Recently, the study of M− polynomial are reported in [15–19].
The Table 1 was given by Deutch and Klavžar to derive degree based topological indices from the M−

polynomial.

Table 1. [13] Derivation of some degree-based topological indices from M−polynomial.

Notation Topological Index f (x, y) Derivation from M(G; x, y)
M1(G) First Zagreb x + y (Dx + Dy)(M(G; x, y))|x=y=1
M2(G) Second Zagreb xy (DxDy)(M(G; x, y))|x=y=1

m M2(G) Second modified Zagreb 1
xy (SxSy)(M(G; x, y))|x=y=1

SD(G) Symmetric division index x2+y2

xy (DxSy + DySx)(M(G; x, y))|x=y=1

H(G) Harmonic 2
x+y 2Sx J(M(G; x, y))|x=1

In(G) Inverse sum index xy
x+y Sx JDxDy(M(G; x, y))|x=1

Rα(G) General Randić index (xy)α DxDy(M(G; x, y))|x=y=1

Where Dx = x ∂ f (x,y)
∂x , Dy = y ∂ f (x,y)

∂y , Sx =
∫ x

0
f (t,y)

t dt, Sy =
∫ y

0
f (x,t)

t dt and J( f (x, y)) = f (x, x) are the
operators.

The Table 2 is given by us in [20] which gives operators to derive general sum connectivity index and the
first general Zagreb index from the M−polynomial.

Table 2. [20] New operator to derive degree-based topological indices from M− polynomial.

Notation Topological Index f (x, y) Derivation from M(G; x, y)
χα(G) General sum connectivity [7] (x + y)α Dα

x(J(M(G; x, y)))|x=1
Mα

1 (G) First general Zagreb [21] xα−1 + yα−1 (Dα−1
x + Dα−1

y )(M(G; x, y))|x=y=1

Note 1. Hyper Zagreb index is obtained by taking α = 2 in general sum connectivity index.
Note 2. Taking α = 2, 3 in first general Zagreb index, first Zagreb and forgotten (F− index) topological indices
are obtained respectively.

The general Zagreb index or (a, b)− Zagreb index was introduced by Azari et al. [22], which is a
generalized version of vertex-degree-based topological index and is defined as

M(a,b)(G) = ∑
uv∈E(G)

(dG(u)adG(v)b + dG(u)bdG(v)a).

The importance of general Zagreb index is that from this index, one can derive seven more topological indices
as given in [9]. But in fact, general Zagreb index can also be obtained from the M−polynomial with suitable
operator, which we present in the Table 3.

Table 3. Operator to derive general Zagreb index from M− polynomial.

Notation Topological Index f (x, y) Derivation from M(G; x, y)
M(a,b)(G) General Zagreb index [22] xayb + xbya (Da

xDb
y + Db

xDa
y)(M(G; x, y))|x=y=1

Thus, general Zagreb index can be derived from the M− polynomial. To show this we derive the M−
polynomial of cactus graphs in the next section and compare with the results of Nilanjan De obtained in [9].
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2. M−Polynomials of cactus chains

In this section, we obtain M− polynomials of two general cactus chains namely para cacti chain and
ortho-cacti chain of cycles. We first compute M− polynomial of para cacti chain of cycles denoted by Cn

m
where m is the length of each cycle and n is the length of the chain. Every block in Cn

m is a cycle Cm.
The following theorem gives the M− polynomial of Cn

m.

Theorem 2. Let Cn
m be para cacti chain of cycles for m ≥ 3, n ≥ 2. Then

M(Cn
m; x, y) = (mn− 4n + 4)x2y2 + 4(n− 1)x2y4.

Proof. The para cacti chain of cycles Cn
m has mn − n + 1 vertices and mn edges. The edge set of Cn

m can be
partitioned as,

|E{2,2}| = |{uv ∈ E(Cn
m) : dCn

m(u) = 2 and dCn
m(v) = 2}| = (mn− 4n + 4).

|E{2,4}| = |{uv ∈ E(Cn
m) : dCn

m(u) = 2 and dCn
m(v) = 4}| = 4(n− 1).

Thus, by using definition of M− polynomial we have,

M(Cn
m; x, y) = (mn− 4n + 4)x2y2 + 4(n− 1)x2y4.

Corollary 3. Let Cn
m be para cacti chain of cycles for m ≥ 3, n ≥ 2. Then

Ma,b(Cn
m) = 2(mn− 4n + 4)2a+b + 4(n− 1)2a+b(2a + 2b).

Proof. To derive general Zagreb index from M−polynomial we use the operator given in Table 3. Now,

Ma,b(Cn
m) = (Da

xDb
y + Db

xDa
y)(M(Cn

m; x, y))|x=y=1

= (Da
xDb

y + Db
xDa

y)((mn− 4n + 4)x2y2 + 4(n− 1)x2y4)|x=y=1

= (Da
xDb

y)((mn− 4n + 4)x2y2 + 4(n− 1)x2y4)

+(Db
xDa

y)((mn− 4n + 4)x2y2 + 4(n− 1)x2y4)|x=y=1

= 2(mn− 4n + 4)2a+b + 4(n− 1)2a+b(2a + 2b).

The expression obtained above, i.e.,

Ma,b(Cn
m) = 2(mn− 4n + 4)2a+b + 4(n− 1)2a+b(2a + 2b)

is same expression obtained in [9], Theorem 1. This shows that the M−polynomial has an extra advantage
than the general Zagreb index as one can derive about 10 (listed in Tables 1, 2 and 3) degree-based topological
indices from the M−polynomial including general Zagreb index so far.

The following corollary gives the several topological indices of para cacti chain of cycles derived from
M−polynomial.

Corollary 4. Let Cn
m be para cacti chain of cycles for m ≥ 3, n ≥ 2. Then

1. M1(Cn
m) = 4mn + 8n− 8.

2. M2(Cn
m) = 4mn + 16n− 16.

3. m M2(Cn
m) =

mn−2n+2
4 .

4. SD(Cn
m) = 2mn + 2n− 2.

5. H(Cn
m) =

3mn−8n−8
6 .

6. In(Cn
m) =

3mn+4n−4
3 .

7. χα(Cn
m) = (mn− 4n + 4)4α + 4(n− 1)6α.
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8. Mα
1 (C

n
m) = (mn− 4n + 4)2α + (n− 1)22α+1(2α−1 + 1).

9. Rα(Cn
m) = (mn− 4n + 4)22α + (n− 1)23α+2.

Proof. Using the above Theorem 2 and column 4 of Table 1, we get the desired results.

Figure 1. Para-chain square cactus Qn

Corollary 5. Let Qn be para-chain square cactus graph for n ≥ 2. Then

M(Qn; x, y) = 4x2y2 + 4(n− 1)x2y4.

Proof. Taking m = 4 in the Theorem 2, we get the desired result.

Corollary 6. Let Qn be para-chain square cactus graph for n ≥ 2. Then

1. M1(Qn) = 24n− 8.
2. M2(Qn) = 32n− 16.
3. m M2(Qn) =

n+1
2 .

4. SD(Qn) = 10n− 2.
5. H(Qn) =

4n−8
6 .

6. In(Qn) =
16n−4

3 .
7. χα(Qn) = 4α+1 + 4(n− 1)6α.
8. Mα

1 (Qn) = 2α+2 + (n− 1)22α+1(2α−1 + 1).
9. Rα(Qn) = 22α+2 + (n− 1)23α+2.

Figure 2. Para-chain hexagonal cactus graph Ln.

Corollary 7. Let Qn be para-chain square cactus graph for n ≥ 2. Then

M(Qn; x, y) = (2n + 4)x2y2 + 4(n− 1)x2y4.

Proof. Taking m = 6 in the Theorem 2, we get the desired result.
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Corollary 8. Let Ln be para-chain hexagonal cactus graph for n ≥ 3. Then

1. M1(Ln) = 32n− 8.
2. M2(Ln) = 40n− 16.
3. m M2(Ln) =

2n+1
2 .

4. SD(Ln) = 14n− 2.
5. H(Ln) =

5n−4
3 .

6. In(Ln) =
22n−4

3 .
7. χα(Ln) = (2n + 4)4α + 4(n− 1)6α.
8. Mα

1 (Ln) = (2n + 4)2α + (n− 1)22α+1(2α−1 + 1).
9. Rα(Ln) = (2n + 4)22α + (n− 1)23α+2.

We now consider the ortho-chain cycles with cut-vertices are adjacent. Let COn
m be ortho-chain cactus

graph, where m is the length of each cycle and n is the length of the chain. It is easy to see that |V(COn
m)| =

mn− n + 1 and |E(COn
m)| = mn. In the following theorem we obtain M−polynomial of COn

m.

Theorem 9. Let COn
m be ortho cacti chain of cycles for m ≥ 3, n ≥ 2. Then

M(COn
m; x, y) = (mn− 3n + 2)x2y2 + 2nx2y4 + (n− 1)x4y4.

Proof. The COn
m be ortho-chain cacti of cycles has mn − n + 1 vertices and mn edges. The edge partition of

COn
m is given by,

E{2,2} = {uv ∈ E(COn
m) : dCOn

m(u) = 2 and dCOn
m(v) = 2},

E{2,4} = {uv ∈ E(COn
m) : dCOn

m(u) = 2 and dCOn
m(v) = 4},

E{4,4} = {uv ∈ E(COn
m) : dCOn

m(u) = 4 and dCOn
m(v) = 4},

Now, |E{2,2}| = mn− 3m + 2,

|E{2,4}| = 2n,

|E{4,4}| = n− 1.

Thus, the M− polynomial of COn
m is

M(COn
m; x, y) = (mn− 3n + 2)x2y2 + 2nx2y4 + (n− 1)x4y4.

Corollary 10. Let COn
m be ortho cacti chain of cycles for m ≥ 3, n ≥ 2. Then

1. M1(COn
m) = 4mn + 8n− 8.

2. M2(COn
m) = 4mn + 20n− 24.

3. m M2(COn
m) =

4mn−7n+7
16 .

4. SD(COn
m) = 2mn + n.

5. H(COn
m) =

6mn−7n+9
12 .

6. In(COn
m) =

3mn+5n
3 .

7. χα(COn
m) = (mn− 3n + 2)4α + 2n6α + (n− 1)8α.

8. Mα
1 (COn

m) = (mn− 3n + 2)2α + (n− 1)22α−1 + n2α(2α−1 + 1).
9. Rα(COn

m) = (mn− 3n + 2)22α + n23α+1 + (n− 1)42α.

Proof. Using the Theorem 9 and column 4 of Table 1, we get the desired results.

Now, we consider chain triangular cactus as shown in Figure 3, denoted by Tn, where n is the length of
the Tn. Tn is special case of COn

m for m = 3.

Corollary 11. Let Tn be the chain triangular cactus for n ≥ 2. Then

M(Tn; x, y) = 2x2y2 + 2nx2y4 + (n− 1)x4y4.
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Figure 3. Chain triangular Cactus Tn.

Proof. The proof follows by substituting m = 3 in Theorem 9.

Corollary 12. Let Tn be the chain triangular cactus for n ≥ 2. Then

1. M1(Tn) = 20n− 8.
2. M2(Tn) = 32n− 24.
3. m M2(Tn) =

5n+7
16 .

4. SD(Tn) = 7n.
5. H(Tn) =

11n+9
12 .

6. In(Tn) =
14n

3 .
7. χα(Tn) = 22α+1 + 2n6α + (n− 1)8α.
8. Mα

1 (Tn) = 2α+1 + (n− 1)22α−1 + n2α(2α−1 + 1).
9. Rα(Tn) = 22α+1 + n23α+1 + (n− 1)42α.

Figure 4. Ortho chain square cactus On.

Corollary 13. Let On be the ortho-chain square cactus for n ≥ 2. Then

M(On; x, y) = (n + 2)x2y2 + 2nx2y4 + (n− 1)x4y4.

Proof. The proof follows by substituting m = 4 in Theorem 9.

Corollary 14. Let On be the ortho-chain square cactus for n ≥ 2. Then

1. M1(On) = 24n− 8.
2. M2(On) = 36n− 24.
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3. m M2(On) =
9n+7

16 .
4. SD(On) = 9n.
5. H(On) =

17n+9
12 .

6. In(On) =
17n

3 .
7. χα(On) = (n + 2)4α + 2n6α + (n− 1)8α.
8. Mα

1 (On) = (n + 2)2α + (n− 1)22α−1 + n2α(2α−1 + 1).
9. Rα(On) = (n + 2)22α + n23α+1 + (n− 1)42α.

The graph Q(m, n) is derived from Km and m copies of Kn by identifying every vertex of Km with a vertex
of one Kn [11]. Here we compute the M− polynomial of the graph Q(m, n) and derive some other topological
indices from it. The graph Q(m, n) is depicted in Figure 5.

b

b b

b

b

Km

Kn

Kn

Kn

Kn

Kn

Figure 5. An example of Q(m, n) graph

Theorem 15. Let Q(m, n) be ortho-chain for m, n ≥ 2. Then

M(Q(m, n); x, y) =
m(n− 1)(n− 2)

2
xn−1yn−1 + m(n− 1)xn−1ym+n−2 +

m(n− 1)
2

xm+n−2ym+n−2.

Proof. The edge partition of Q(m, n) is partitioned into the following subsets,

E1 = {uv ∈ E(Q(m, n)) : dQ(m,n)(u) = dQ(m,n)(v) = (n− 1)},
E2 = {uv ∈ E(Q(m, n)) : dQ(m,n)(u) = (n− 1) and dQ(m,n)(v) = (m + n− 2)},
E3 = {uv ∈ E(Q(m, n)) : dQ(m,n)(u) = dQ(m,n)(v) = (m + n− 2)},

Now, |E1| =
m(n− 1)(n− 2)

2
,

|E2| = m(n− 1),

|E3| =
m(n− 1)

2
.

Thus, the M− polynomial of Q(m, n) is

M(Q(m, n); x, y) = m(n−1)(n−2)
2 xn−1yn−1 + m(n− 1)xn−1ym+n−2 + m(n−1)

2 xm+n−2ym+n−2.
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In the para-cacti chain Cn
m, if we join a new vertex and each cycle of length m ≥ 3, (Cm + K1) then we call

it as wheel chain, denoted by Wn
m. The number of vertices and edges of Wn

m are mn + 1 and 2mn, respectively.
In the following theorem we calculate the M−polynomial of Wn

m.

Theorem 16. Let Wn
m be wheel chain for m ≥ 3, n ≥ 2. Then

M(Wn
m; x, y) = 2(m(n− 1)− 3n + 4)x3y3 + 4(n− 1)x3y6 + 2(m− 1)x3ym + 2(n− 1)x6ym.

Proof. The edge partition of Wn
m is partitioned into the following subsets,

E1 = {uv ∈ E(Wn
m) : dWn

m(u) = dWn
m(v) = 3},

E2 = {uv ∈ E(Wn
m) : dWn

m(u) = 3 and dWn
m(v) = 6},

E3 = {uv ∈ E(Wn
m) : dWn

m(u) = 3 and dWn
m(v) = m},

E4 = {uv ∈ E(Wn
m) : dWn

m(u) = 6 and dWn
m(v) = m},

Now, |E1| = mn− 4n + 4,

|E2| = 4(n− 1),

|E3| = mn− 2n + 2,

|E4| = 2(n− 1).

Thus, the M− polynomial of Wn
m is

M(Wn
m; x, y) = (mn− 4n + 4)x3y3 + 4(n− 1)x3y6 + (mn− 2n + 2)x3ym + 2(n− 1)x6ym.

b

b

b

b

b

b

b

b b

b

b

b

b b b b b

b

b

b

b

Figure 6. Wheel chain graph Wn
4 .

Taking m = 4 in the Theorem 16, we get the following corollary for M− polynomial of Wn
4 . The graph Wn

4
is shown in Figure 6.

Corollary 17. Let Wn
4 be the wheel chain graph for n ≥ 2. Then

M(Wn
4 ; x, y) = 4x3y3 + 4(n− 1)x3y6 + 2(n + 1)x3y4 + 2(n− 1)x6y4.

Using Theorem 16 and Tables 1, 2 and 3 one can easily obtain topological indices of wheel chain graph
Wn

4 . Since it is a routine task, we omit the calculation here.

3. Conclusion

In this paper, we have obtained M−polynomials of some cactus graphs. We have shown that the general
Zagreb index can also be derived from the M−polynomial of a graph. As an example, we have derived general
Zagreb index of cactus graphs from the M− polynomial of cactus graphs. The Theorem 1 obtained in [9] is
the same as the corollary 3 proved in this paper. Thus generalising the results of general Zagreb index of some
cactus graphs.
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[8] Li, X., & Shi, Y. (2008). A survey on the Randić index. MATCH - Communications in Mathematical and in Computer

Chemistry, 59(1), 127-156.
[9] De, N. (2019). General Zagreb index of some cactus chains. Open Journal of Discrete Applied Mathematics, 2(1), 24 – 31.
[10] Sadeghieh, A., Alikhani, S., Ghanbari, N., & Khalaf, A. J. M. (2017). Hosoya polynomial of some cactus chains. Cogent

Mathematics & Statistics, 4(1), 1305638.
[11] Sadeghieh, A., Ghanbari, N., & Alikhani, S. (2018). Computation of Gutman index of some cactus chains. Electronic

Journal of Graph Theory and Applications, 6(1), 138 – 151.
[12] West, D. B. (1996). An Introduction to Graph Theory. Prentice-Hall: Upper Saddle River, NJ, USA.
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